IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5262-d621508.html
   My bibliography  Save this article

The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow ( Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process

Author

Listed:
  • Zdzislawa Romanowska-Duda

    (Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Str. Banacha 12/16, 92-237 Lodz, Poland)

  • Szymon Szufa

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Mieczysław Grzesik

    (Department of Variety Studies, Nursery and Gene Resources, Research Institute of Horticulture, Str. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland)

  • Krzysztof Piotrowski

    (Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Str. Banacha 12/16, 92-237 Lodz, Poland)

  • Regina Janas

    (Department of Variety Studies, Nursery and Gene Resources, Research Institute of Horticulture, Str. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland)

Abstract

The effect of foliar application of Cyanobacteria and Chlorella sp. monocultures on physiological activity, element composition, development and biomass weight of basket willow ( Salix viminalis L.) and the possibility to prepare biofuel from it in the fortification process was studied. Triple foliar plant spraying with non-sonicated monocultures of Cyanobacteria ( Anabaena sp. PCC 7120, Microcystis aeruginosa MKR 0105) and Chlorella sp. exhibited a considerably progressive impact on metabolic activity and development of plants. This biofertilization increased cytomembrane impermeability, the amount of chlorophyll in plants, photosynthesis productivity and transpiration, as well as degree of stomatal opening associated with a decreased concentration of intercellular CO 2 , in comparison to control (treatments with water, Bio-Algeen S90 or with environmental sample). The applied strains markedly increased the element content (N, P, K) in shoots and the productivity of crucial growth enzymes: alkaline or acid phosphorylase, total dehydrogenases, RNase and nitrate reductase. Treatments did not affect energy properties of the burnt plants. These physiological events were associated with the improved growth of willow plants, namely height, length and amount of all shoots and their freshly harvested dry mass, which were increased by over 25% compared to the controls. The effectiveness of these treatments depended on applied monoculture. The plant spraying with Microcystis aeruginosa MKR 0105 was a little more effective than treatment with Chlorella sp. and Anabaena sp. or the environmental sample. The research demonstrate that the studied Cyanobacteria and Chlorella sp. monocultures have prospective and useful potential in production of Salix viminalis L., which is the basic energy plant around the word. In this work, a special batch reactor was used to produce torrefaction material in an inert atmosphere: nitrogen, thermogravimetric analysis and DTA analysis, like Fourier-transform infrared spectroscopy. The combustion process of Salix viminalis L. with TG-MS analysis was conducted as well as study on a willow torrefaction process, obtaining 30% mass reduction with energy loss close to 10%. Comparing our research results to other types of biomasses, the isothermal temperature of 245 °C during thermo-chemical conversion of willow for the carbonized solid biofuel production from Salix viminalis L. biomass fertilized with Cyanobacteria and Chlorella sp. is relatively low. At the end, a SEM-EDS analysis of ash from torrefied Salix viminalis L. after carbonization process was conducted.

Suggested Citation

  • Zdzislawa Romanowska-Duda & Szymon Szufa & Mieczysław Grzesik & Krzysztof Piotrowski & Regina Janas, 2021. "The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow ( Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Bio," Energies, MDPI, vol. 14(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5262-:d:621508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Marczak-Grzesik & Stanisław Budzyń & Barbara Tora & Szymon Szufa & Krzysztof Kogut & Piotr Burmistrz, 2021. "Low-Cost Organic Adsorbents for Elemental Mercury Removal from Lignite Flue Gas," Energies, MDPI, vol. 14(8), pages 1-15, April.
    2. Katarzyna Ławińska & Szymon Szufa & Andrzej Obraniak & Tomasz Olejnik & Robert Siuda & Jerzy Kwiatek & Dominika Ogrodowczyk, 2020. "Disc Granulation Process of Carbonation Lime Mud as a Method of Post-Production Waste Management," Energies, MDPI, vol. 13(13), pages 1-14, July.
    3. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    4. Szymon Szufa & Grzegorz Wielgosiński & Piotr Piersa & Justyna Czerwińska & Maria Dzikuć & Łukasz Adrian & Wiktoria Lewandowska & Marta Marczak, 2020. "Torrefaction of Straw from Oats and Maize for Use as a Fuel and Additive to Organic Fertilizers—TGA Analysis, Kinetics as Products for Agricultural Purposes," Energies, MDPI, vol. 13(8), pages 1-30, April.
    5. Marta Kisielewska & Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Zdzisława Romanowska-Duda & Magda Dudek, 2020. "Effectiveness of Scenedesmus sp. Biomass Grow and Nutrients Removal from Liquid Phase of Digestates," Energies, MDPI, vol. 13(6), pages 1-11, March.
    6. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    7. Grzegorz Wielgosiński & Justyna Czerwińska & Szymon Szufa, 2021. "Municipal Solid Waste Mass Balance as a Tool for Calculation of the Possibility of Implementing the Circular Economy Concept," Energies, MDPI, vol. 14(7), pages 1-25, March.
    8. Krochmalny, Krystian & Niedzwiecki, Lukasz & Pelińska-Olko, Ewa & Wnukowski, Mateusz & Czajka, Krzysztof & Tkaczuk-Serafin, Monika & Pawlak-Kruczek, Halina, 2020. "Determination of the marker for automation of torrefaction and slow pyrolysis processes – A case study of spherical wood particles," Renewable Energy, Elsevier, vol. 161(C), pages 350-360.
    9. Maciej Dzikuć & Piotr Kuryło & Rafał Dudziak & Szymon Szufa & Maria Dzikuć & Karolina Godzisz, 2020. "Selected Aspects of Combustion Optimization of Coal in Power Plants," Energies, MDPI, vol. 13(9), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    2. Aleksandra Steglińska & Michael Sulyok & Regina Janas & Mieczysław Grzesik & Wiktoria Liszkowska & Dorota Kręgiel & Beata Gutarowska, 2023. "Metabolite Formation by Fungal Pathogens of Potatoes ( Solanum tuberosum L.) in the Presence of Bioprotective Agents," IJERPH, MDPI, vol. 20(6), pages 1-21, March.
    3. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    4. Marta Marczak-Grzesik & Piotr Piersa & Mateusz Karczewski & Szymon Szufa & Hilal Ünyay & Aleksandra Kędzierska-Sar & Piotr Bochenek, 2021. "Modified Fly Ash-Based Adsorbents (MFA) for Mercury and Carbon Dioxide Removal from Coal-Fired Flue Gases," Energies, MDPI, vol. 14(21), pages 1-13, October.
    5. Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
    6. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    7. Piotr Piersa & Szymon Szufa & Justyna Czerwińska & Hilal Ünyay & Łukasz Adrian & Grzegorz Wielgosinski & Andrzej Obraniak & Wiktoria Lewandowska & Marta Marczak-Grzesik & Maria Dzikuć & Zdzislawa Roma, 2021. "Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers," Energies, MDPI, vol. 14(23), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Piersa & Szymon Szufa & Justyna Czerwińska & Hilal Ünyay & Łukasz Adrian & Grzegorz Wielgosinski & Andrzej Obraniak & Wiktoria Lewandowska & Marta Marczak-Grzesik & Maria Dzikuć & Zdzislawa Roma, 2021. "Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers," Energies, MDPI, vol. 14(23), pages 1-27, December.
    2. Katarzyna Ławińska & Szymon Szufa & Andrzej Obraniak & Tomasz Olejnik & Robert Siuda & Jerzy Kwiatek & Dominika Ogrodowczyk, 2020. "Disc Granulation Process of Carbonation Lime Mud as a Method of Post-Production Waste Management," Energies, MDPI, vol. 13(13), pages 1-14, July.
    3. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    4. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    5. Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
    6. Paweł Tomtas & Amadeusz Skwiot & Elżbieta Sobiecka & Andrzej Obraniak & Katarzyna Ławińska & Tomasz P. Olejnik, 2021. "Bench Tests and CFD Simulations of Liquid–Gas Phase Separation Modeling with Simultaneous Liquid Transport and Mechanical Foam Destruction," Energies, MDPI, vol. 14(6), pages 1-14, March.
    7. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    8. Szufa, S. & Piersa, P. & Junga, R. & Błaszczuk, A. & Modliński, N. & Sobek, S. & Marczak-Grzesik, M. & Adrian, Ł. & Dzikuć, M., 2023. "Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler," Energy, Elsevier, vol. 263(PE).
    9. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    10. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    11. Venkata Ravi Sankar Cheela & Michele John & Wahidul K. Biswas & Brajesh Dubey, 2021. "Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment," Energies, MDPI, vol. 14(11), pages 1-23, May.
    12. Marta Marczak-Grzesik & Piotr Piersa & Mateusz Karczewski & Szymon Szufa & Hilal Ünyay & Aleksandra Kędzierska-Sar & Piotr Bochenek, 2021. "Modified Fly Ash-Based Adsorbents (MFA) for Mercury and Carbon Dioxide Removal from Coal-Fired Flue Gases," Energies, MDPI, vol. 14(21), pages 1-13, October.
    13. Rocío González-Sánchez & Sara Alonso-Muñoz & María Sonia Medina-Salgado, 2023. "Circularity in waste management: a research proposal to achieve the 2030 Agenda," Operations Management Research, Springer, vol. 16(3), pages 1520-1540, September.
    14. Jakub Mularski & Norbert Modliński, 2021. "Entrained-Flow Coal Gasification Process Simulation with the Emphasis on Empirical Char Conversion Models Optimization Procedure," Energies, MDPI, vol. 14(6), pages 1-20, March.
    15. Przemysław Rajca & Andrzej Skibiński & Anna Biniek-Poskart & Monika Zajemska, 2022. "Review of Selected Determinants Affecting Use of Municipal Waste for Energy Purposes," Energies, MDPI, vol. 15(23), pages 1-17, November.
    16. Robert Adamski & Dorota Siuta & Bożena Kukfisz & Michał Frydrysiak & Mirosława Prochoń, 2021. "Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco," Energies, MDPI, vol. 14(18), pages 1-22, September.
    17. Michał Głogowski & Przemysław Kubiak & Szymon Szufa & Piotr Piersa & Łukasz Adrian & Mateusz Krukowski, 2021. "The Use of the Fourier Series to Analyze the Shaping of Thermodynamic Processes in Heat Engines," Energies, MDPI, vol. 14(8), pages 1-23, April.
    18. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    19. Andrzej Rostocki & Hilal Unyay & Katarzyna Ławińska & Andrzej Obraniak, 2022. "Granulates Based on Bio and Industrial Waste and Biochar in a Sustainable Economy," Energies, MDPI, vol. 16(1), pages 1-18, December.
    20. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5262-:d:621508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.