IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i9p372-d402255.html
   My bibliography  Save this article

The Perceived Benefits, Challenges, and Environmental Effects of Cover Crop Implementation in South Carolina

Author

Listed:
  • Lucas Clay

    (Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall Box 340317, Clemson, SC 29634, USA)

  • Katharine Perkins

    (Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall Box 340317, Clemson, SC 29634, USA)

  • Marzieh Motallebi

    (Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC 29442, USA)

  • Alejandro Plastina

    (Department of Economics, Iowa State University, 478 Heady Hall, Ames, IA 50011, USA)

  • Bhupinder Singh Farmaha

    (Department of Plant and Environmental Sciences, Edisto Research and Education Center, Clemson University, 64 Research Rd, Blackville, SC 29817, USA)

Abstract

Cover crops are becoming more accepted as a viable best management practice because of their ability to provide important environmental and soil health benefits. Because of these benefits, many land managers are strongly encouraging the use of cover crops. Additionally, there is limited information on farmers′ perceptions of the benefits and challenges of implementing cover crops. Many farmers state that they do not have enough money or time to implement cover crops. In an attempt to gather more data about the adoption rate and perceptions of cover crops in South Carolina, a survey was sent to 3000 row crop farmers across the state. Farmers were asked whether they implement cover crops and their perceptions of the benefits and challenges associated with implementation. Furthermore, questions were asked regarding the impact of row cropping on their environment to gauge farmer′s education level on environmental impacts. Responses showed many people are implementing cover crops; however, there are still differences in perceptions about benefits and challenges between those who are adopting cover crops and those who are not. This research assesses these differences and aims to provide a baseline for focusing cover crop programs to tackle these certain challenges and promote the benefits.

Suggested Citation

  • Lucas Clay & Katharine Perkins & Marzieh Motallebi & Alejandro Plastina & Bhupinder Singh Farmaha, 2020. "The Perceived Benefits, Challenges, and Environmental Effects of Cover Crop Implementation in South Carolina," Agriculture, MDPI, vol. 10(9), pages 1-14, August.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:372-:d:402255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/9/372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/9/372/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arellanes, Peter & Lee, David R., 2003. "The Determinants Of Adoption Of Sustainable Agriculture Technologies: Evidence From The Hillsides Of Honduras," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25826, International Association of Agricultural Economists.
    2. Plastina, Alejandro & Liu, Fangge & Miguez, Fernando E. & Carlson, Sarah, 2018. "Cover Crops Use in Midwestern U.S. Agriculture: Perceived Benefits and Net Returns," ISU General Staff Papers 201804290700001595, Iowa State University, Department of Economics.
    3. Glenn Sheriff, 2005. "Efficient Waste? Why Farmers Over-Apply Nutrients and the Implications for Policy Design," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(4), pages 542-557.
    4. Marcillo, Guillermo S. & Carlson, Sarah & Filbert, Meghan & Kaspar, Thomas & Plastina, Alejandro & Miguez, Fernando E., 2019. "Maize system impacts of cover crop management decisions: A simulation analysis of rye biomass response to planting populations in Iowa, U.S.A," Agricultural Systems, Elsevier, vol. 176(C).
    5. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    6. Gabriel, José Luis & Garrido, Alberto & Quemada, Miguel, 2013. "Cover crops effect on farm benefits and nitrate leaching: Linking economic and environmental analysis," Agricultural Systems, Elsevier, vol. 121(C), pages 23-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Britt Moore, 2023. "Challenges and Opportunities for Cover Crop Mediated Soil Water Use Efficiency Enhancements in Temperate Rain-Fed Cropping Systems: A Review," Land, MDPI, vol. 12(5), pages 1-14, April.
    2. Han, Guang & Niles, Meredith T., 2023. "An adoption spectrum for sustainable agriculture practices: A new framework applied to cover crop adoption," Agricultural Systems, Elsevier, vol. 212(C).
    3. Calder McCollum & Jason S. Bergtold & Jeffery Williams & Amer Al-Sudani & Elizabeth Canales, 2022. "Perceived Benefit and Cost Perception Gaps between Adopters and Non-Adopters of In-Field Conservation Practices of Agricultural Producers," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    4. J. Carl Ureta & Lucas Clay & Marzieh Motallebi & Joan Ureta, 2020. "Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services," Land, MDPI, vol. 10(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Carl Ureta & Lucas Clay & Marzieh Motallebi & Joan Ureta, 2020. "Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services," Land, MDPI, vol. 10(1), pages 1-20, December.
    2. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    3. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    4. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Chad Lawley & Erik Lichtenberg & Doug Parker, 2009. "Biases in Nutrient Management Planning," Land Economics, University of Wisconsin Press, vol. 85(1), pages 186-200.
    6. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    7. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    8. Woldegebrial Zeweld & Guido Van Huylenbroeck & Girmay Tesfay & Hossein Azadi & Stijn Speelman, 2018. "Impacts of Socio-Psychological Factors on Actual Adoption of Sustainable Land Management Practices in Dryland and Water Stressed Areas," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    9. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    10. Nana Chen & Xin Zhao & Shuxian Dou & Aixing Deng & Chengyan Zheng & Tiehua Cao & Zhenwei Song & Weijian Zhang, 2023. "The Tradeoff between Maintaining Maize ( Zea mays L.) Productivity and Improving Soil Quality under Conservation Tillage Practice in Semi-Arid Region of Northeast China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    11. Tatyana Deryugina & Barrett Kirwan, 2018. "Does The Samaritan'S Dilemma Matter? Evidence From U.S. Agriculture," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 983-1006, April.
    12. Mahadevan, Renuka, 2008. "The high price of sweetness: The twin challenges of efficiency and soil erosion in Fiji's sugar industry," Ecological Economics, Elsevier, vol. 66(2-3), pages 468-477, June.
    13. Hans J. Kandel & Dulan P. Samarappuli & Kory L. Johnson & Marisol T. Berti, 2021. "Soybean Relative Maturity, Not Row Spacing, Affected Interseeded Cover Crops Biomass," Agriculture, MDPI, vol. 11(5), pages 1-13, May.
    14. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    15. Jeremy G. Weber & Nigel Key & Erik O’Donoghue, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 707-742.
    16. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    17. Gandorfer, Markus & Rajsic, Predrag, 2008. "Modeling Economic Optimum Nitrogen Rates for Winter Wheat When Inputs Affect Yield and Output-Price," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 9(2).
    18. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    20. repec:ags:iaae12:126829 is not listed on IDEAS
    21. Kassie, Menale & Teklewolde, Hailemariam & Erenstein, Olaf & Jaleta, Moti & Marenya, Paswel & Mekurai, Mulugetta, 2015. "Technology diversification: Assessing impacts on crop income and agrochemical uses in Malawi," 2015 Conference, August 9-14, 2015, Milan, Italy 211838, International Association of Agricultural Economists.

    More about this item

    Keywords

    cover crops; sustainable agriculture; best management practices; agriculture education;
    All these keywords.

    JEL classification:

    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q13 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Markets and Marketing; Cooperatives; Agribusiness
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q17 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agriculture in International Trade
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:372-:d:402255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.