IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p988-d1136724.html
   My bibliography  Save this article

Challenges and Opportunities for Cover Crop Mediated Soil Water Use Efficiency Enhancements in Temperate Rain-Fed Cropping Systems: A Review

Author

Listed:
  • Eric Britt Moore

    (Department of Environmental Sciences, University of North Carolina Wilmington, 1080A Dobo Hall, Wilmington, NC 28411, USA)

Abstract

Soils are at the nexus of the atmospheric, geological, and hydrologic cycles, providing invaluable ecosystem services associated with water provision. The immeasurably vital role of water provision is of urgent concern given the intertwined and interdependent challenges of growing human populations, increased agricultural demands, climate change, and freshwater scarcity. Adapting temperate rain-fed cropping systems to meet the challenges of the 21st century will require considerable advancements in our understanding of the interdependent biophysical processes governing carbon and soil-water dynamics. Soil carbon and water are inextricably linked, and agricultural management practices must take this complexity into account if crop productivity is to be maintained and improved. Given the widespread, intensive use of agricultural soils worldwide, it stands to reason that readily adaptable crop management practices can and must play a central role in both soil carbon and water management. This review details challenges and opportunities for utilizing cover crop management to enhance soil carbon stocks and soil water use efficiency in rain-fed cropping systems. A review of the current body of knowledge shows that cover crops can play a more prominent role in soil carbon and water management; however, the more widespread use of cover crops may be hindered by the inconsistencies of experimental data demonstrating cover crop effects on soil water retention, as well as cover crop effect inconsistencies arising from complex interactions between soil carbon, water, and land management. Although these gaps in our collective knowledge are not insignificant, they do present substantial opportunities for further research at both mechanistic and landscape-system scales.

Suggested Citation

  • Eric Britt Moore, 2023. "Challenges and Opportunities for Cover Crop Mediated Soil Water Use Efficiency Enhancements in Temperate Rain-Fed Cropping Systems: A Review," Land, MDPI, vol. 12(5), pages 1-14, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:988-:d:1136724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucas Clay & Katharine Perkins & Marzieh Motallebi & Alejandro Plastina & Bhupinder Singh Farmaha, 2020. "The Perceived Benefits, Challenges, and Environmental Effects of Cover Crop Implementation in South Carolina," Agriculture, MDPI, vol. 10(9), pages 1-14, August.
    2. Catherine DeLong & Richard Cruse & John Wiener, 2015. "The Soil Degradation Paradox: Compromising Our Resources When We Need Them the Most," Sustainability, MDPI, vol. 7(1), pages 1-14, January.
    3. Wallander, Steven & Smith, David & Bowman, Maria & Claassen, Roger, 2021. "Cover Crop Trends, Programs, and Practices in the United States," Economic Information Bulletin 309562, United States Department of Agriculture, Economic Research Service.
    4. Ioanna S. Panagea & Antonio Berti & Pavel Čermak & Jan Diels & Annemie Elsen & Helena Kusá & Ilaria Piccoli & Jean Poesen & Chris Stoate & Mia Tits & Zoltan Toth & Guido Wyseure, 2021. "Soil Water Retention as Affected by Management Induced Changes of Soil Organic Carbon: Analysis of Long-Term Experiments in Europe," Land, MDPI, vol. 10(12), pages 1-15, December.
    5. Bossio, Deborah & Geheb, Kim & Critchley, William, 2010. "Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods," Agricultural Water Management, Elsevier, vol. 97(4), pages 536-542, April.
    6. Shakeel Ahmad Bhat & Alban Kuriqi & Mehraj U. Din Dar & Owais Bhat & Saad Sh. Sammen & Abu Reza Md. Towfiqul Islam & Ahmed Elbeltagi & Owais Shah & Nadhir AI-Ansari & Rawshan Ali & Salim Heddam, 2022. "Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    2. J. Carl Ureta & Lucas Clay & Marzieh Motallebi & Joan Ureta, 2020. "Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services," Land, MDPI, vol. 10(1), pages 1-20, December.
    3. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    4. Sinare, Hanna & Gordon, Line J. & Enfors Kautsky, Elin, 2016. "Assessment of ecosystem services and benefits in village landscapes – A case study from Burkina Faso," Ecosystem Services, Elsevier, vol. 21(PA), pages 141-152.
    5. Sandra Ricart & Anna Ribas & David Pavón, 2016. "Qualifying irrigation system sustainability by means of stakeholder perceptions and concerns: lessons from the Segarra‐Garrigues Canal, Spain," Natural Resources Forum, Blackwell Publishing, vol. 40(1-2), pages 77-90, February.
    6. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    7. Rosanna Salvia & Valentina Quaranta & Adele Sateriano & Giovanni Quaranta, 2022. "Land Resource Depletion, Regional Disparities, and the Claim for a Renewed ‘Sustainability Thinking’ under Early Desertification Conditions," Resources, MDPI, vol. 11(3), pages 1-14, March.
    8. Elke Noellemeyer & Romina Fernández & Alberto Quiroga, 2013. "Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina," Agriculture, MDPI, vol. 3(1), pages 1-11, January.
    9. Bianca B. Barreto & Fernando P. Rivera & Blair M. McKenzie & Katharine Preedy & Yangminghao Liu & Lionel X. Dupuy & Elisângela Ribeiro & Roberto A. Braga, 2023. "Analysis of the Effect of Tilling and Crop Type on Soil Structure Using 3D Laser Profilometry," Agriculture, MDPI, vol. 13(11), pages 1-13, October.
    10. Zeleke Asaye & Dong-Gill Kim & Fantaw Yimer & Katharina Prost & Oukula Obsa & Menfese Tadesse & Mersha Gebrehiwot & Nicolas Brüggemann, 2022. "Effects of Combined Application of Compost and Mineral Fertilizer on Soil Carbon and Nutrient Content, Yield, and Agronomic Nitrogen Use Efficiency in Maize-Potato Cropping Systems in Southern Ethiopi," Land, MDPI, vol. 11(6), pages 1-20, May.
    11. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    12. Sileshi, Gudeta W. & Akinnifesi, Festus K. & Ajayi, Oluyede C. & Muys, Bart, 2011. "Integration of legume trees in maize-based cropping systems improves rain use efficiency and yield stability under rain-fed agriculture," Agricultural Water Management, Elsevier, vol. 98(9), pages 1364-1372, July.
    13. Yin, Baozhong & Hu, Zhaohui & Wang, Yandong & Zhao, Jin & Pan, Zhihua & Zhen, Wenchao, 2021. "Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L.) yield in the North China Plain," Agricultural Water Management, Elsevier, vol. 247(C).
    14. Chen, Le & Rejesus, Roderick M., 2023. "The Impact of Soil Erosion on Agricultural Land Values in the US Midwest," 2023 Annual Meeting, July 23-25, Washington D.C. 335763, Agricultural and Applied Economics Association.
    15. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    16. Félicien Majoro & Umaru Garba Wali & Omar Munyaneza & François-Xavier Naramabuye, 2023. "Sustainability Analysis of Soil Erosion Control in Rwanda: Case Study of the Sebeya Watershed," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    17. Rudi Hessel & Guido Wyseure & Ioanna S. Panagea & Abdallah Alaoui & Mark S. Reed & Hedwig van Delden & Melanie Muro & Jane Mills & Oene Oenema & Francisco Areal & Erik van den Elsen & Simone Verzandvo, 2022. "Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe," Land, MDPI, vol. 11(6), pages 1-27, May.
    18. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    19. Rattan Lal, 2014. "Climate Strategic Soil Management," Challenges, MDPI, vol. 5(1), pages 1-32, February.
    20. Jiaying He & Xiaohui Jiang & Yuxin Lei & Wenjuan Cai & Junjun Zhang, 2022. "Temporal and Spatial Variation and Driving Forces of Soil Erosion on the Loess Plateau before and after the Implementation of the Grain-for-Green Project: A Case Study in the Yanhe River Basin, China," IJERPH, MDPI, vol. 19(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:988-:d:1136724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.