IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v145y2021ics136655452030819x.html
   My bibliography  Save this article

At-stop control measures in public transport: Literature review and research agenda

Author

Listed:
  • Gkiotsalitis, K.
  • Cats, O.

Abstract

In this literature review, we systematically review studies on public transit control with a specific focus on at-stop measures. In our synthesis of the relevant literature, we consider three perspectives: (1) the mathematical models of the proposed methodologies; (2) their complexity; (3) their applicability in real-time operations and their advantages and disadvantages considering their practical implications. The reviewed control methods include holding, dynamic dispatching, and stop-skipping. Control methods, that have attracted more attention in recent years due to the advancements in automation and data availability, aim at alleviating the negative effects of service variability because of external disruptions. Following the synthesis of the literature, we propose a research agenda pertaining to the combination of control measures, passenger-oriented decision making, coordinated network control, deployment of electric buses and disturbance management.

Suggested Citation

  • Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:transe:v:145:y:2021:i:c:s136655452030819x
    DOI: 10.1016/j.tre.2020.102176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452030819X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
    2. Leong, Waiyan & Goh, Karen & Hess, Stephane & Murphy, Paul, 2016. "Improving bus service reliability: The Singapore experience," Research in Transportation Economics, Elsevier, vol. 59(C), pages 40-49.
    3. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    4. Rabi G. Mishalani & Mark R. McCord & Stacey Forman, 2008. "Schedule-Based and Autoregressive Bus Running Time Modeling in the Presence of Driver-Bus Heterogeneity," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 301-317, Springer.
    5. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    6. Peter Knoppers & Theo Muller, 1995. "Optimized Transfer Opportunities in Public Transport," Transportation Science, INFORMS, vol. 29(1), pages 101-105, February.
    7. Rossetti, Manuel D. & Turitto, Timothy, 1998. "Comparing static and dynamic threshold based control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 607-620, November.
    8. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    9. Berrebi, Simon J. & Crudden, Sean Óg & Watkins, Kari E., 2018. "Translating research to practice: Implementing real-time control on high-frequency transit routes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 213-226.
    10. G. F. Newell, 1974. "Control of Pairing of Vehicles on a Public Transportation Route, Two Vehicles, One Control Point," Transportation Science, INFORMS, vol. 8(3), pages 248-264, August.
    11. Pellegrini, Paola & Marlière, Grégory & Rodriguez, Joaquin, 2014. "Optimal train routing and scheduling for managing traffic perturbations in complex junctions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 58-80.
    12. Aichong Sun & Mark Hickman, 2008. "The Holding Problem at Multiple Holding Stations," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 339-359, Springer.
    13. Xia Luo & Shuozhi Liu & Peter J. Jin & Xiaowen Jiang & Hongfei Ding, 2017. "A connected-vehicle-based dynamic control model for managing the bus bunching problem with capacity constraints," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(6), pages 722-740, August.
    14. Nadjla Ghaemi & Oded Cats & Rob M. P. Goverde, 2017. "Railway disruption management challenges and possible solution directions," Public Transport, Springer, vol. 9(1), pages 343-364, July.
    15. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    16. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    17. Eberlein, Xu Jun & Wilson, Nigel H. M. & Barnhart, Cynthia & Bernstein, David, 1998. "The real-time deadheading problem in transit operations control," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 77-100, February.
    18. Chen, Xumei & Yu, Lei & Zhang, Yushi & Guo, Jifu, 2009. "Analyzing urban bus service reliability at the stop, route, and network levels," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 722-734, October.
    19. André Puong & Nigel H. M. Wilson, 2008. "A Train Holding Model for Urban Rail Transit Systems," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 319-337, Springer.
    20. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    21. Cats, Oded, 2014. "Regularity-driven bus operation: Principles, implementation and business models," Transport Policy, Elsevier, vol. 36(C), pages 223-230.
    22. Argote-Cabanero, Juan & Daganzo, Carlos F. & Lynn, Jacob W., 2015. "Dynamic control of complex transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 146-160.
    23. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    24. Phillips, William & del Rio, Andrés & Muñoz, Juan Carlos & Delgado, Felipe & Giesen, Ricardo, 2015. "Quantifying the effects of driver non-compliance and communication system failure in the performance of real-time bus control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 463-472.
    25. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    26. James Strathman & Thomas Kimpel & Kenneth Dueker & Richard Gerhart & Steve Callas, 2002. "Evaluation of transit operations: data applications of Tri-Met's automated Bus Dispatching System," Transportation, Springer, vol. 29(3), pages 321-345, August.
    27. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "A Lagrangian heuristic for the real-time vehicle rescheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 419-433, May.
    28. Peter G. Furth, 1986. "Zonal Route Design for Transit Corridors," Transportation Science, INFORMS, vol. 20(1), pages 1-12, February.
    29. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    30. Jing-Quan Li & Pitu B. Mirchandani & Denis Borenstein, 2008. "Parallel Auction Algorithm for Bus Rescheduling," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 281-299, Springer.
    31. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    32. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    33. E. E. Osuna & G. F. Newell, 1972. "Control Strategies for an Idealized Public Transportation System," Transportation Science, INFORMS, vol. 6(1), pages 52-72, February.
    34. Šemrov, D. & Marsetič, R. & Žura, M. & Todorovski, L. & Srdic, A., 2016. "Reinforcement learning approach for train rescheduling on a single-track railway," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 250-267.
    35. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    36. Kliewer, Natalia & Mellouli, Taieb & Suhl, Leena, 2006. "A time-space network based exact optimization model for multi-depot bus scheduling," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1616-1627, December.
    37. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    38. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    39. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    40. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    41. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
    42. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    43. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    44. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    45. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
    46. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    47. Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
    48. William C. Jordan & Mark A. Turnquist, 1979. "Zone Scheduling of Bus Routes to Improve Service Reliability," Transportation Science, INFORMS, vol. 13(3), pages 242-268, August.
    49. Miles, John & Potter, Stephen, 2014. "Developing a viable electric bus service: The Milton Keynes demonstration project," Research in Transportation Economics, Elsevier, vol. 48(C), pages 357-363.
    50. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    51. Argote-Cabanero, Juan & Daganzo, Carlos F & Lynn, Jacob W, 2015. "Dynamic Control of Complex Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j16889k, Institute of Transportation Studies, UC Berkeley.
    52. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    53. Adamski, Andrzej & Turnau, Andrzej, 1998. "Simulation support tool for real-time dispatching control in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 73-87, February.
    54. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    2. Martínez-Estupiñan, Yerly & Delgado, Felipe & Muñoz, Juan Carlos & Watkins, Kari E., 2023. "Improving the performance of headway control tools by using individual driving speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    3. Mohammad Sadrani & Ahmad Reza Jafarian-Moghaddam & Mohsen Aboutalebi Esfahani & Amir Masoud Rahimi, 2023. "Designing limited-stop bus services for minimizing operator and user costs under crowding conditions," Public Transport, Springer, vol. 15(1), pages 97-128, March.
    4. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    5. Pawełoszek Ilona & Wieczorkowski Jędrzej, 2023. "Trip planning mobile application: a perspective case study of user experience," Engineering Management in Production and Services, Sciendo, vol. 15(2), pages 55-71, June.
    6. Bai, Qiaowen & Ong, Ghim Ping, 2023. "Similarity-based bus services assignment with capacity constraint for staggered bus stops," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Qiang, Shengjie & Huang, Qingxia, 2023. "Impacts of bus holding strategies on the performance of mixed traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    2. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    3. Martínez-Estupiñan, Yerly & Delgado, Felipe & Muñoz, Juan Carlos & Watkins, Kari E., 2023. "Improving the performance of headway control tools by using individual driving speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    4. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    5. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    6. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    7. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    8. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    9. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    10. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    11. Petit, Antoine & Ouyang, Yanfeng & Lei, Chao, 2018. "Dynamic bus substitution strategy for bunching intervention," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 1-16.
    12. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    13. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    14. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    15. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    16. Liang, Shidong & He, Shengxue & Zhang, Hu & Ma, Minghui, 2021. "Optimal holding time calculation algorithm to improve the reliability of high frequency bus route considering the bus capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Berrebi, Simon J. & Crudden, Sean Óg & Watkins, Kari E., 2018. "Translating research to practice: Implementing real-time control on high-frequency transit routes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 213-226.
    18. Xuemei Zhou & Yehan Wang & Xiangfeng Ji & Caitlin Cottrill, 2019. "Coordinated Control Strategy for Multi-Line Bus Bunching in Common Corridors," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    19. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:145:y:2021:i:c:s136655452030819x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.