IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v78y2015icp83-105.html
   My bibliography  Save this article

Analysis of real-time control strategies in a corridor with multiple bus services

Author

Listed:
  • Hernández, Daniel
  • Muñoz, Juan Carlos
  • Giesen, Ricardo
  • Delgado, Felipe

Abstract

Control strategies have been widely used in the literature to counteract the effects of bus bunching in passenger‘s waiting times and its variability. These strategies have only been studied for the case of a single bus line in a corridor. However, in many real cases this assumption does not hold. Indeed, there are many transit corridors with multiple bus lines interacting, and this interaction affects the efficiency of the implemented control mechanism.

Suggested Citation

  • Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
  • Handle: RePEc:eee:transb:v:78:y:2015:i:c:p:83-105
    DOI: 10.1016/j.trb.2015.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515000934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
    2. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    3. Zubieta, Lourdes, 1998. "A network equilibrium model for oligopolistic competition in city bus services," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 413-422, August.
    4. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    5. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    6. Fisk, C. S., 1984. "Game theory and transportation systems modelling," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 301-313.
    7. Caroline S. Fisk, 1986. "A Conceptual Framework for Optimal Transportation Systems Planning with Integrated Supply and Demand Models," Transportation Science, INFORMS, vol. 20(1), pages 37-47, February.
    8. Phillips, William & del Rio, Andrés & Muñoz, Juan Carlos & Delgado, Felipe & Giesen, Ricardo, 2015. "Quantifying the effects of driver non-compliance and communication system failure in the performance of real-time bus control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 463-472.
    9. Sun, Lian-Ju & Gao, Zi-You, 2007. "An equilibrium model for urban transit assignment based on game theory," European Journal of Operational Research, Elsevier, vol. 181(1), pages 305-314, August.
    10. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    11. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    12. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    13. Yaron Hollander & Joseph Prashker, 2006. "The applicability of non-cooperative game theory in transport analysis," Transportation, Springer, vol. 33(5), pages 481-496, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peikun Li & Chaoqun Ma & Jing Ning & Yun Wang & Caihua Zhu, 2019. "Analysis of Prediction Accuracy under the Selection of Optimum Time Granularity in Different Metro Stations," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    2. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    3. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    4. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    5. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    6. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    7. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    8. Argote-Cabanero, Juan & Daganzo, Carlos F. & Lynn, Jacob W., 2015. "Dynamic control of complex transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 146-160.
    9. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    10. van Lieshout, Rolf N. & Bouman, Paul C. & van den Akker, Marjan & Huisman, Dennis, 2021. "A self-organizing policy for vehicle dispatching in public transit systems with multiple lines," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 46-64.
    11. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    12. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    13. van Lieshout, R.N. & Bouman, P.C. & van den Akker, M. & Huisman, D., 2020. "A Self-Organizing Policy for Vehicle Dispatching in Public Transit Systems with Multiple Lines," Econometric Institute Research Papers EI2020-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    15. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    16. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    17. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qi & Chow, Joseph Y.J., 2022. "Efficient and stable data-sharing in a public transit oligopoly as a coopetitive game," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 64-87.
    2. Shiqian Ji & Jiaming Zhong & Zhaocheng He, 2022. "A Bus Subsidy Scheme Design Model Considering Competition between Bus Companies," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    3. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    4. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    5. Martínez-Estupiñan, Yerly & Delgado, Felipe & Muñoz, Juan Carlos & Watkins, Kari E., 2023. "Improving the performance of headway control tools by using individual driving speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    6. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    7. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    8. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    9. Preston, John, 2008. "Competition in transit markets," Research in Transportation Economics, Elsevier, vol. 23(1), pages 75-84, January.
    10. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    11. Petit, Antoine & Ouyang, Yanfeng & Lei, Chao, 2018. "Dynamic bus substitution strategy for bunching intervention," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 1-16.
    12. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    13. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    14. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    15. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    16. Gkiotsalitis, K. & Schmidt, M.E. & van der Hurk, E., 2021. "Subline frequency setting for autonomous minibusses under demand uncertainty," ERIM Report Series Research in Management ERS-2021-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    18. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    19. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    20. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:78:y:2015:i:c:p:83-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.