IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i3p517-548.html
   My bibliography  Save this article

The effect of uncertainty on US transport-related GHG emissions and fuel consumption out to 2050

Author

Listed:
  • Bastani, Parisa
  • Heywood, John B.
  • Hope, Chris

Abstract

The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.

Suggested Citation

  • Bastani, Parisa & Heywood, John B. & Hope, Chris, 2012. "The effect of uncertainty on US transport-related GHG emissions and fuel consumption out to 2050," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 517-548.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:3:p:517-548
    DOI: 10.1016/j.tra.2011.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411001807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2011.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karplus, Valerie J. & Paltsev, Sergey & Reilly, John M., 2010. "Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 620-641, October.
    2. repec:cdl:ucsbec:32-98 is not listed on IDEAS
    3. Buehler, Ralph, 2011. "Determinants of transport mode choice: a comparison of Germany and the USA," Journal of Transport Geography, Elsevier, vol. 19(4), pages 644-657.
    4. Buehler, Ralph & Pucher, John, 2011. "Making public transport financially sustainable," Transport Policy, Elsevier, vol. 18(1), pages 126-138, January.
    5. Alan Greenspan & Darrel Cohen, 1999. "Motor Vehicle Stocks, Scrappage, And Sales," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 369-383, August.
    6. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    7. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    8. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    9. Stanley, John K. & Hensher, David A. & Loader, Chris, 2011. "Road transport and climate change: Stepping off the greenhouse gas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1020-1030.
    10. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    11. Bandivadekar, Anup & Cheah, Lynette & Evans, Christopher & Groode, Tiffany & Heywood, John & Kasseris, Emmanuel & Kromer, Matthew & Weiss, Malcolm, 2008. "Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet," Energy Policy, Elsevier, vol. 36(7), pages 2754-2760, July.
    12. Wright, C. & Egan, J., 2000. "De-marketing the car," Transport Policy, Elsevier, vol. 7(4), pages 287-294, October.
    13. Yang, Christopher & McCollum, David L & McCarthy, Ryan & Leighty, Wayne, 2009. "Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California," Institute of Transportation Studies, Working Paper Series qt2ns1q98f, Institute of Transportation Studies, UC Davis.
    14. Macharis, Cathy & Van Hoeck, Ellen & Pekin, Ethem & van Lier, Tom, 2010. "A decision analysis framework for intermodal transport: Comparing fuel price increases and the internalisation of external costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 550-561, August.
    15. Hope, Chris & Anderson, John & Wenman, Paul, 1993. "Policy analysis of the greenhouse effect : An application of the PAGE model," Energy Policy, Elsevier, vol. 21(3), pages 327-338, March.
    16. Bass, Pablo & Donoso, Pedro & Munizaga, Marcela, 2011. "A model to assess public transport demand stability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 755-764, October.
    17. Su, Qing, 2010. "Travel demand in the US urban areas: A system dynamic panel data approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 110-117, February.
    18. Graham-Rowe, Ella & Skippon, Stephen & Gardner, Benjamin & Abraham, Charles, 2011. "Can we reduce car use and, if so, how? A review of available evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 401-418, June.
    19. Kenneth Train, 1980. "A Structured Logit Model of Auto Ownership and Mode Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 357-370.
    20. Tal, Gil & Cohen-Blankshtain, Galit, 2011. "Understanding the role of the forecast-maker in overestimation forecasts of policy impacts: The case of Travel Demand Management policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 389-400, June.
    21. McCollum, David & Yang, Christopher, 2009. "Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5580-5596, December.
    22. Mokhtarian, Patricia L. & Chen, Cynthia, 2004. "TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 643-675.
    23. Cullinane, Sharon, 1992. "Attitudes towards the car in the U.K.: Some implications for policies on congestion and the environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(4), pages 291-301, July.
    24. Abrantes, Pedro A.L. & Wardman, Mark R., 2011. "Meta-analysis of UK values of travel time: An update," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 1-17, January.
    25. Andreas Schafer and Henry D. Jacoby, 2006. "Experiments with a Hybrid CGE-MARKAL Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 171-177.
    26. Brownstone, David & Bunch, David S. & Golob, Thomas F., 1994. "A Demand Forecasting System for Clean-Fuel Vehicles," University of California Transportation Center, Working Papers qt79c3g7xv, University of California Transportation Center.
    27. Wadud, Zia, 2011. "Personal tradable carbon permits for road transport: Why, why not and who wins?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1052-1065.
    28. Marshall, Stephen & Banister, David, 2000. "Travel reduction strategies: intentions and outcomes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(5), pages 321-338, June.
    29. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    30. Stradling, S. G. & Meadows, M. L. & Beatty, S., 2000. "Helping drivers out of their cars Integrating transport policy and social psychology for sustainable change," Transport Policy, Elsevier, vol. 7(3), pages 207-215, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin, Niall P.D. & Bishop, Justin D.K. & Choudhary, Ruchi & Boies, Adam M., 2015. "Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis," Applied Energy, Elsevier, vol. 157(C), pages 929-939.
    2. Guimarães, Vanessa de Almeida & Leal Junior, Ilton Curty & da Silva, Marcelino Aurélio Vieira, 2018. "Evaluating the sustainability of urban passenger transportation by Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 732-752.
    3. Schröder, Daniel & Kirn, Lukas & Kinigadner, Julia & Loder, Allister & Blum, Philipp & Xu, Yihan & Lienkamp, Markus, 2023. "Ending the myth of mobility at zero costs: An external cost analysis," Research in Transportation Economics, Elsevier, vol. 97(C).
    4. Shang, Gang & Xu, Liyun & Tian, Jinzhu & Cai, Dongwei & Xu, Zhun & Zhou, Zhuo, 2023. "A real-time green construction optimization strategy for engineering vessels considering fuel consumption and productivity: A case study on a cutter suction dredger," Energy, Elsevier, vol. 274(C).
    5. Ottelin, Juudit & Heinonen, Jukka & Junnila, Seppo, 2014. "Greenhouse gas emissions from flying can offset the gain from reduced driving in dense urban areas," Journal of Transport Geography, Elsevier, vol. 41(C), pages 1-9.
    6. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    7. Travesset-Baro, Oriol & Gallachóir, Brian P.Ó. & Jover, Eric & Rosas-Casals, Marti, 2016. "Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis," Energy Policy, Elsevier, vol. 96(C), pages 78-92.
    8. Chien‐Chiang Lee & Ying Yuan & Huwei Wen, 2022. "Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China," Natural Resources Forum, Blackwell Publishing, vol. 46(3), pages 289-310, August.
    9. Wells, Peter & Varma, Adarsh & Newman, Dan & Kay, Duncan & Gibson, Gena & Beevor, Jamie & Skinner, Ian, 2013. "Governmental regulation impact on producers and consumers: A longitudinal analysis of the European automotive market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 28-41.
    10. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2016. "Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options," Energy, Elsevier, vol. 112(C), pages 715-728.
    11. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    12. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    13. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    14. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    15. Baptista, Patrícia C. & Silva, Carla M. & Farias, Tiago L. & Heywood, John B., 2012. "Energy and environmental impacts of alternative pathways for the Portuguese road transportation sector," Energy Policy, Elsevier, vol. 51(C), pages 802-815.
    16. Mallapragada, Dharik S. & Duan, Gang & Agrawal, Rakesh, 2014. "From shale gas to renewable energy based transportation solutions," Energy Policy, Elsevier, vol. 67(C), pages 499-507.
    17. Hao Zhang & Jie He & Xiaomeng Shi & Qiong Hong & Jie Bao & Shuqi Xue, 2020. "Technology Characteristics, Stakeholder Pressure, Social Influence, and Green Innovation: Empirical Evidence from Chinese Express Companies," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    18. Keskisaari, Ville & Ottelin, Juudit & Heinonen, Jukka, 2017. "Greenhouse gas impacts of different modality style classes using latent class travel behavior model," Journal of Transport Geography, Elsevier, vol. 65(C), pages 155-164.
    19. Choi, Jaesung & Roberts, David C. & Lee, Eunsu, 2014. "Forecast of CO2 Emissions From the U.S. Transportation Sector: Estimation From a Double Exponential Smoothing Model," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(3).
    20. Bozorgi, Ali & Pazour, Jennifer & Nazzal, Dima, 2014. "A new inventory model for cold items that considers costs and emissions," International Journal of Production Economics, Elsevier, vol. 155(C), pages 114-125.
    21. Cascetta, Ennio & Cartenì, Armando & Pagliara, Francesca & Montanino, Marcello, 2015. "A new look at planning and designing transportation systems: A decision-making model based on cognitive rationality, stakeholder engagement and quantitative methods," Transport Policy, Elsevier, vol. 38(C), pages 27-39.
    22. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.
    23. Bozorgi, Ali, 2016. "Multi-product inventory model for cold items with cost and emission consideration," International Journal of Production Economics, Elsevier, vol. 176(C), pages 123-142.
    24. Garcia, Rita & Freire, Fausto, 2017. "A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 935-945.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwanen, Tim & Banister, David & Anable, Jillian, 2011. "Scientific research about climate change mitigation in transport: A critical review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 993-1006.
    2. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2016. "Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives," Applied Energy, Elsevier, vol. 180(C), pages 196-212.
    3. Homolka, Lubor & Ngo, Vu Minh & Pavelková, Drahomíra & Le, Bach Tuan & Dehning, Bruce, 2020. "Short- and medium-term car registration forecasting based on selected macro and socio-economic indicators in European countries," Research in Transportation Economics, Elsevier, vol. 80(C).
    4. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    5. Mabit, Stefan L., 2014. "Vehicle type choice under the influence of a tax reform and rising fuel prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 32-42.
    6. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    7. J. Javid, Roxana & Nejat, Ali & Hayhoe, Katharine, 2014. "Selection of CO2 mitigation strategies for road transportation in the United States using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 960-972.
    8. Siskos, Pelopidas & Capros, Pantelis & De Vita, Alessia, 2015. "CO2 and energy efficiency car standards in the EU in the context of a decarbonisation strategy: A model-based policy assessment," Energy Policy, Elsevier, vol. 84(C), pages 22-34.
    9. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    10. Kim, Jae D. & Rahimi, Mansour, 2014. "Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions," Energy Policy, Elsevier, vol. 73(C), pages 620-630.
    11. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    12. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    13. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    14. Haseeb, Attiya & Mitra, Raktim, 2024. "Travel behaviour changes among young adults and associated implications for social sustainability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    15. Alshammari, Yousef M. & Sarathy, S. Mani, 2017. "Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices," Energy Policy, Elsevier, vol. 101(C), pages 502-511.
    16. Jeremy Webb & Max Briggs & Clevo Wilson, 2018. "Breaking automotive modal lock-in: a choice modelling study of Jakarta commuters," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 47-68, January.
    17. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    18. Habibian, Meeghat & Kermanshah, Mohammad, 2013. "Coping with congestion: Understanding the role of simultaneous transportation demand management policies on commuters," Transport Policy, Elsevier, vol. 30(C), pages 229-237.
    19. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
    20. Lyons, Glenn & Hammond, Paul & Mackay, Kate, 2019. "The importance of user perspective in the evolution of MaaS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 22-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:3:p:517-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.