IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v216y2025ics0040162525001647.html
   My bibliography  Save this article

Crude oil Price forecasting: Leveraging machine learning for global economic stability

Author

Listed:
  • Rao, Amar
  • Sharma, Gagan Deep
  • Tiwari, Aviral Kumar
  • Hossain, Mohammad Razib
  • Dev, Dhairya

Abstract

The volatility of the energy market, particularly crude oil, significantly impacts macroeconomic indices, such as inflation, economic growth, currency exchange rates, and trade balances. Accurate crude oil price forecasting is crucial to risk management and global economic stability. This study examines various models, including GARCH (1,1), Vanilla LSTM, GARCH (1,1) LSTM, and GARCH (1,1) GRU, to predict Brent crude oil prices using different time frequencies and sample periods. The LSTM and GARCH (1,1)-GRU hybrid models showed superior performance, with LSTM slightly better in predictive accuracy and GARCH (1,1)-GRU in minimizing squared errors. These findings emphasize the importance of precise crude oil price forecasting for the global energy market and manufacturing sectors that rely on crude oil prices. Accurate forecasting helps ensure economic sustainability and stability and prevents disruptions to production and distribution chains in both developed and emerging economies. Policymakers may choose to implement energy security measures in response to the significant impact of crude oil price volatility on the macroeconomic indicators. These measures could include maintaining strategic reserves, diversifying energy sources, and decreasing the dependence on volatile oil markets. By doing so, a country's ability to handle oil price fluctuations and ensure a stable energy supply can be enhanced.

Suggested Citation

  • Rao, Amar & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Hossain, Mohammad Razib & Dev, Dhairya, 2025. "Crude oil Price forecasting: Leveraging machine learning for global economic stability," Technological Forecasting and Social Change, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:tefoso:v:216:y:2025:i:c:s0040162525001647
    DOI: 10.1016/j.techfore.2025.124133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162525001647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2025.124133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Salisu, Afees A. & Fasanya, Ismail O., 2013. "Modelling oil price volatility with structural breaks," Energy Policy, Elsevier, vol. 52(C), pages 554-562.
    3. Yonghong Jiang & Gengyu Tian & Bin Mo, 2020. "Spillover and quantile linkage between oil price shocks and stock returns: new evidence from G7 countries," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-26, December.
    4. Monoj Kumar Majumder & Mala Raghavan & Joaquin Vespignani, 2022. "The impact of commodity price volatility on fiscal balance and the role of real interest rate," Empirical Economics, Springer, vol. 63(3), pages 1375-1402, September.
    5. Cui, Yan & Feng, Yun, 2020. "Composite hedge and utility maximization for optimal futures hedging," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 15-32.
    6. Srivastava, Mrinalini & Rao, Amar & Parihar, Jaya Singh & Chavriya, Shubham & Singh, Surendar, 2023. "What do the AI methods tell us about predicting price volatility of key natural resources: Evidence from hyperparameter tuning," Resources Policy, Elsevier, vol. 80(C).
    7. Yadav, Miklesh Prasad & Sharif, Taimur & Ashok, Shruti & Dhingra, Deepika & Abedin, Mohammad Zoynul, 2023. "Investigating volatility spillover of energy commodities in the context of the Chinese and European stock markets," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. Katsuya Ito, 2012. "The impact of oil price volatility on the macroeconomy in Russia," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 695-702, June.
    9. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    10. Li, Leon, 2022. "The dynamic interrelations of oil-equity implied volatility indexes under low and high volatility-of-volatility risk," Energy Economics, Elsevier, vol. 105(C).
    11. Wang, Yu Shan, 2013. "Oil price effects on personal consumption expenditures," Energy Economics, Elsevier, vol. 36(C), pages 198-204.
    12. Zhao, Lin & Zhang, Xun & Wang, Shouyang & Xu, Shanying, 2016. "The effects of oil price shocks on output and inflation in China," Energy Economics, Elsevier, vol. 53(C), pages 101-110.
    13. Snyder, Hannah, 2019. "Literature review as a research methodology: An overview and guidelines," Journal of Business Research, Elsevier, vol. 104(C), pages 333-339.
    14. Zhang, Wencheng & Wei, Rui & Peng, Shuijun, 2020. "The oil-slick trade: An analysis of embodied crude oil in China's trade and consumption," Energy Economics, Elsevier, vol. 88(C).
    15. Liu, Wenwen & Chen, Xue, 2022. "Natural resources commodity prices volatility and economic uncertainty: Evaluating the role of oil and gas rents in COVID-19," Resources Policy, Elsevier, vol. 76(C).
    16. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    17. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    18. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    19. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Zhu, Bo, 2021. "Oil shocks and stock market volatility: New evidence," Energy Economics, Elsevier, vol. 103(C).
    20. Hillard G. Huntington, 1998. "Crude Oil Prices and U.S. Economic Performance: Where Does the Asymmetry Reside?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-132.
    21. Rao, Amar & Lucey, Brian & Kumar, Satish & Lim, Weng Marc, 2023. "Do green energy markets catch cold when conventional energy markets sneeze?," Energy Economics, Elsevier, vol. 127(PA).
    22. Toorajipour, Reza & Sohrabpour, Vahid & Nazarpour, Ali & Oghazi, Pejvak & Fischl, Maria, 2021. "Artificial intelligence in supply chain management: A systematic literature review," Journal of Business Research, Elsevier, vol. 122(C), pages 502-517.
    23. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    24. Smith, L. Vanessa & Tarui, Nori & Yamagata, Takashi, 2021. "Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions," Energy Economics, Elsevier, vol. 97(C).
    25. Berger, Theo, 2023. "Explainable artificial intelligence and economic panel data: A study on volatility spillover along the supply chains," Finance Research Letters, Elsevier, vol. 54(C).
    26. Khalfaoui, Rabeh & Mefteh-Wali, Salma & Viviani, Jean-Laurent & Ben Jabeur, Sami & Abedin, Mohammad Zoynul & Lucey, Brian M., 2022. "How do climate risk and clean energy spillovers, and uncertainty affect U.S. stock markets?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    27. Tian, Meiyu & Li, Wanyang & Wen, Fenghua, 2021. "The dynamic impact of oil price shocks on the stock market and the USD/RMB exchange rate: Evidence from implied volatility indices," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    28. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    29. Chen, Shengming & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "The Russia–Ukraine war and energy market volatility: A novel application of the volatility ratio in the context of natural gas," Resources Policy, Elsevier, vol. 85(PA).
    30. Philippe Le Billon & Païvi Lujala & Devyani Singh & Vance Culbert & Berit Kristoffersen, 2021. "Fossil fuels, climate change, and the COVID-19 crisis: pathways for a just and green post-pandemic recovery," Climate Policy, Taylor & Francis Journals, vol. 21(10), pages 1347-1356, November.
    31. Wang, Yihan & Bouri, Elie & Fareed, Zeeshan & Dai, Yuhui, 2022. "Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine," Finance Research Letters, Elsevier, vol. 49(C).
    32. Belhassine, Olfa, 2020. "Volatility spillovers and hedging effectiveness between the oil market and Eurozone sectors: A tale of two crises," Research in International Business and Finance, Elsevier, vol. 53(C).
    33. Pan, Zhiyuan & Huang, Xiao & Liu, Li & Huang, Juan, 2023. "Geopolitical uncertainty and crude oil volatility: Evidence from oil-importing and oil-exporting countries," Finance Research Letters, Elsevier, vol. 52(C).
    34. Coskun, Merve & Taspinar, Nigar, 2022. "Volatility spillovers between Turkish energy stocks and fossil fuel energy commodities based on time and frequency domain approaches," Resources Policy, Elsevier, vol. 79(C).
    35. Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Resources Policy, Elsevier, vol. 78(C).
    36. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
    37. Archana Singh & Narinder Pal Singh, 2017. "Crude oil market and global financial crisis - structural break and market volatility analysis," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 13(2), pages 203-216.
    38. Sun, Yanpeng & Chang, Hsuling & Vasbieva, Dinara G. & Andlib, Zubaria, 2022. "Economic performance, investment in energy resources, foreign trade, and natural resources volatility nexus: Evidence from China's provincial data," Resources Policy, Elsevier, vol. 78(C).
    39. Su, Chi-Wei & Huang, Shi-Wen & Qin, Meng & Umar, Muhammad, 2021. "Does crude oil price stimulate economic policy uncertainty in BRICS?," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    40. Zhaoyong Sun & Xinyu Cai & Wei-Chiao Huang, 2022. "The Impact of Oil Price Fluctuations on Consumption, Output, and Investment in China’s Industrial Sectors," Energies, MDPI, vol. 15(9), pages 1-19, May.
    41. Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
    42. Jiao, Jing-Wen & Yin, Jun-Ping & Xu, Ping-Feng & Zhang, Juan & Liu, Yuan, 2023. "Transmission mechanisms of geopolitical risks to the crude oil market——A pioneering two-stage geopolitical risk analysis approach," Energy, Elsevier, vol. 283(C).
    43. Stefan Claus & Massimo Stella, 2022. "Natural Language Processing and Cognitive Networks Identify UK Insurers’ Trends in Investor Day Transcripts," Future Internet, MDPI, vol. 14(10), pages 1-18, October.
    44. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    45. Zhou, Huairong & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Li, Hongwei & Liu, Zhiqiang & Yang, Sheng, 2021. "A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis," Energy, Elsevier, vol. 225(C).
    46. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
    47. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    48. Le, Thai-Ha & Le, Anh Tu & Le, Ha-Chi, 2021. "The historic oil price fluctuation during the Covid-19 pandemic: What are the causes?," Research in International Business and Finance, Elsevier, vol. 58(C).
    49. Cunado, Juncal & Perez de Gracia, Fernando, 2003. "Do oil price shocks matter? Evidence for some European countries," Energy Economics, Elsevier, vol. 25(2), pages 137-154, March.
    50. Luo, Xingguo & Qin, Shihua, 2017. "Oil price uncertainty and Chinese stock returns: New evidence from the oil volatility index," Finance Research Letters, Elsevier, vol. 20(C), pages 29-34.
    51. Huynh, Thanh D. & Nguyen, Thu Ha & Truong, Cameron, 2020. "Climate risk: The price of drought," Journal of Corporate Finance, Elsevier, vol. 65(C).
    52. Shehabi, Manal, 2022. "Modeling long-term impacts of the COVID-19 pandemic and oil price declines on Gulf oil economies," Economic Modelling, Elsevier, vol. 112(C).
    53. Ma, Qiang & Mentel, Grzegorz & Zhao, Xin & Salahodjaev, Raufhon & Kuldasheva, Zebo, 2022. "Natural resources tax volatility and economic performance: Evaluating the role of digital economy," Resources Policy, Elsevier, vol. 75(C).
    54. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    55. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    56. S. Boubaker & Z. Liu & Y. Zhang, 2022. "Forecasting Oil Commodity Spot Price in a Data-Rich Environment," Post-Print hal-04445034, HAL.
    57. Chen, Shiu-Sheng & Hsu, Kai-Wei, 2012. "Reverse globalization: Does high oil price volatility discourage international trade?," Energy Economics, Elsevier, vol. 34(5), pages 1634-1643.
    58. Balcilar, Mehmet & Hammoudeh, Shawkat & Toparli, Elif Akay, 2018. "On the risk spillover across the oil market, stock market, and the oil related CDS sectors: A volatility impulse response approach," Energy Economics, Elsevier, vol. 74(C), pages 813-827.
    59. Liu, Tie-Ying & Lee, Chien-Chiang, 2018. "Will the energy price bubble burst?," Energy, Elsevier, vol. 150(C), pages 276-288.
    60. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    61. Shu Tong & Mohammed Majdy M. Baslom & Hussain Zaid H. Alsharif, 2018. "Investigating Volatility in Saudi Arabia Crude Oil Prices and its impact on oil Stock Market," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 338-346.
    62. Salisu, Afees A. & Gupta, Rangan, 2021. "Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach," Global Finance Journal, Elsevier, vol. 48(C).
    63. Zhu, Pengfei & Tang, Yong & Wei, Yu & Lu, Tuantuan, 2021. "Multidimensional risk spillovers among crude oil, the US and Chinese stock markets: Evidence during the COVID-19 epidemic," Energy, Elsevier, vol. 231(C).
    64. Zhu, Pengfei & Tang, Yong & Wei, Yu & Dai, Yimin, 2019. "Portfolio strategy of International crude oil markets: A study based on multiwavelet denoising-integration MF-DCCA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    65. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    66. Bouazizi, Tarek & Guesmi, Khaled & Galariotis, Emilios & Vigne, Samuel A., 2024. "Crude oil prices in times of crisis: The role of Covid-19 and historical events," International Review of Financial Analysis, Elsevier, vol. 91(C).
    67. Papadimitriou, Theophilos & Gogas, Periklis & Stathakis, Efthimios, 2014. "Forecasting energy markets using support vector machines," Energy Economics, Elsevier, vol. 44(C), pages 135-142.
    68. Ghosh, Sajal, 2011. "Examining crude oil price - Exchange rate nexus for India during the period of extreme oil price volatility," Applied Energy, Elsevier, vol. 88(5), pages 1886-1889, May.
    69. Zhao, Ling, 2023. "Global economic policy uncertainty and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 54(C).
    70. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    71. Sepehr Ramyar & Farhad Kianfar, 2019. "Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 743-761, February.
    72. Raggad, Bechir, 2023. "Can implied volatility predict returns on oil market? Evidence from Cross-Quantilogram Approach," Resources Policy, Elsevier, vol. 80(C).
    73. Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
    74. Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
    75. Steven J. Davis & Zhu Liu & Zhu Deng & Biqing Zhu & Piyu Ke & Taochun Sun & Rui Guo & Chaopeng Hong & Bo Zheng & Yilong Wang & Olivier Boucher & Pierre Gentine & Philippe Ciais, 2022. "Emissions rebound from the COVID-19 pandemic," Nature Climate Change, Nature, vol. 12(5), pages 412-414, May.
    76. T. Bouazizi & K. Guesmi & E. Galariotis & S. Vigne, 2024. "Crude oil prices in times of crisis: The role of Covid-2019 and historical events," Post-Print hal-04236498, HAL.
    77. Vadlamannati, Krishna Chaitanya & de Soysa, Indra, 2020. "Oil price volatility and political unrest: Prudence and protest in producer and consumer societies, 1980–2013," Energy Policy, Elsevier, vol. 145(C).
    78. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    79. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    80. Sun, Chuanwang & Ding, Dan & Fang, Xingming & Zhang, Huiming & Li, Jianglong, 2019. "How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China's market," Energy, Elsevier, vol. 169(C), pages 637-645.
    81. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    82. Lv, Xiaodong & Shan, Xian, 2013. "Modeling natural gas market volatility using GARCH with different distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5685-5699.
    83. Lee, Chi-Chuan & Tang, Huayun & Li, Ding, 2022. "The roles of oil shocks and geopolitical uncertainties on China’s green bond returns," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 494-505.
    84. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    85. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    86. Rodríguez-Soler, Rocío & Uribe-Toril, Juan & De Pablo Valenciano, Jaime, 2020. "Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool," Land Use Policy, Elsevier, vol. 97(C).
    87. Rahman, Sajjadur, 2016. "Another perspective on gasoline price responses to crude oil price changes," Energy Economics, Elsevier, vol. 55(C), pages 10-18.
    88. repec:hal:journl:hal-04444805 is not listed on IDEAS
    89. Mensi, Walid & Nekhili, Ramzi & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Oil and precious metals: Volatility transmission, hedging, and safe haven analysis from the Asian crisis to the COVID-19 crisis," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 73-96.
    90. Ioannis Chatziantoniou & Christos Floros & David Gabauer, 2022. "Volatility Contagion Between Crude Oil and G7 Stock Markets in the Light of Trade Wars and COVID-19: A TVP-VAR Extended Joint Connectedness Approach," Springer Books, in: Christos Floros & Ioannis Chatziantoniou (ed.), Applications in Energy Finance, chapter 0, pages 145-168, Springer.
    91. Yu, Yang & Guo, SongLin & Chang, XiaoChen, 2022. "Oil prices volatility and economic performance during COVID-19 and financial crises of 2007–2008," Resources Policy, Elsevier, vol. 75(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Aviral Kumar & Sharma, Gagan Deep & Rao, Amar & Hossain, Mohammad Razib & Dev, Dhairya, 2024. "Unraveling the crystal ball: Machine learning models for crude oil and natural gas volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    2. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    3. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    4. Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
    5. Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Do, Hung Xuan & Smyth, Russell, 2020. "Exploiting the heteroskedasticity in measurement error to improve volatility predictions in oil and biofuel feedstock markets," Energy Economics, Elsevier, vol. 86(C).
    6. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2023. "Natural gas and the utility sector nexus in the U.S.: Quantile connectedness and portfolio implications," Energy Economics, Elsevier, vol. 120(C).
    7. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    8. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    9. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    10. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    11. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    12. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    13. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    14. Liu, Ling & Shahrour, Mohamad H. & Wojewodzki, Michal & Rohani, Alireza, 2025. "Decoding energy market turbulence: A TVP-VAR connectedness analysis of climate policy uncertainty and geopolitical risk shocks," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    15. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    16. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    17. Apergis, Nicholas & Payne, James E., 2017. "Volatility Modeling of U.S. Metropolitan Retail Gasoline Prices: An Empirical Note," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 48(2), September.
    18. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    19. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    20. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:216:y:2025:i:c:s0040162525001647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.