IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v116y2017icp40-52.html
   My bibliography  Save this article

Not fearless, but self-enhanced: The effects of anxiety on the willingness to use autonomous cars depend on individual levels of self-enhancement

Author

Listed:
  • Hohenberger, Christoph
  • Spörrle, Matthias
  • Welpe, Isabell M.

Abstract

The aim of our study is to examine how positive cognitive evaluations, anxiety-related affects, and the interplay between these two factors influence the willingness to use autonomous cars. We argue that the negative effect of anxiety as well as the interplay of positive evaluations and anxiety within the technology adoption process are contingent on a so far neglected facet of individual motivations, which plays a major role when dealing with anxiety towards unknown, yet status-laden, objects: self-enhancement. By employing a vignette-based online survey, we examined how people assess different levels of autonomous cars. Our results show that positive evaluations of benefits increase, whereas anxiety-related feelings decrease individual willingness to use autonomous cars; moreover, the positive effect of benefit evaluations diminished with increasing levels of anxiety. More importantly, self-enhancement emerged as a pivotal variable in this context: First, the negative effect of anxiety decreased with increasing levels of self-enhancement. Second, the attenuating effect of anxiety on the effects of positive evaluations was less pronounced with increasing levels of self-enhancement. Especially for people with low levels of self-enhancement motivation anxiety-related feelings (e.g., via strengthening self-efficacy beliefs) should be reduced. Moreover, self-enhancement values should be triggered when promoting autonomous cars.

Suggested Citation

  • Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2017. "Not fearless, but self-enhanced: The effects of anxiety on the willingness to use autonomous cars depend on individual levels of self-enhancement," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 40-52.
  • Handle: RePEc:eee:tefoso:v:116:y:2017:i:c:p:40-52
    DOI: 10.1016/j.techfore.2016.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516306618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Viswanath Venkatesh, 2000. "Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model," Information Systems Research, INFORMS, vol. 11(4), pages 342-365, December.
    3. Rong-Tsu Wang, 2013. "Modeling Corporate Social Performance and Job Pursuit Intention: Mediating Mechanisms of Corporate Reputation and Job Advancement Prospects," Journal of Business Ethics, Springer, vol. 117(3), pages 569-582, October.
    4. M. Mitchell Waldrop, 2015. "Autonomous vehicles: No drivers required," Nature, Nature, vol. 518(7537), pages 20-23, February.
    5. Holger Steinmetz & Peter Schmidt & Andrea Tina-Booh & Siegrid Wieczorek & Shalom Schwartz, 2009. "Testing measurement invariance using multigroup CFA: differences between educational groups in human values measurement," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(4), pages 599-616, July.
    6. Kai-Ying Chen & Meng-Lin Chang, 2013. "User acceptance of ‘near field communication’ mobile phone service: an investigation based on the ‘unified theory of acceptance and use of technology’ model," The Service Industries Journal, Taylor & Francis Journals, vol. 33(6), pages 609-623, May.
    7. Martínez-Torres, M.R. & Díaz-Fernández, M.C. & Toral, S.L. & Barrero, F., 2015. "The moderating role of prior experience in technological acceptance models for ubiquitous computing services in urban environments," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 146-160.
    8. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.
    9. Junquera, Beatriz & Moreno, Blanca & Álvarez, Roberto, 2016. "Analyzing consumer attitudes towards electric vehicle purchasing intentions in Spain: Technological limitations and vehicle confidence," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 6-14.
    10. MacKenzie, Scott B. & Podsakoff, Philip M., 2012. "Common Method Bias in Marketing: Causes, Mechanisms, and Procedural Remedies," Journal of Retailing, Elsevier, vol. 88(4), pages 542-555.
    11. Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2016. "How and why do men and women differ in their willingness to use automated cars? The influence of emotions across different age groups," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 374-385.
    12. Meuter, Matthew L. & Ostrom, Amy L. & Bitner, Mary Jo & Roundtree, Robert, 2003. "The influence of technology anxiety on consumer use and experiences with self-service technologies," Journal of Business Research, Elsevier, vol. 56(11), pages 899-906, November.
    13. Garbinsky, Emily N. & Klesse, Anne-Kathrin & Aaker, Jennifer, 2014. "Money in the Bank: Feeling Powerful Increases Saving," Research Papers 2146, Stanford University, Graduate School of Business.
    14. Arts, Joep W.C. & Frambach, Ruud T. & Bijmolt, Tammo H.A., 2011. "Generalizations on consumer innovation adoption: A meta-analysis on drivers of intention and behavior," International Journal of Research in Marketing, Elsevier, vol. 28(2), pages 134-144.
    15. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    16. Emily N. Garbinsky & Anne-Kathrin Klesse & Jennifer Aaker, 2014. "Money in the Bank: Feeling Powerful Increases Saving," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 41(3), pages 610-623.
    17. Kent, Jennifer L., 2014. "Driving to save time or saving time to drive? The enduring appeal of the private car," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 103-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dannemiller, Katherine A. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Chandra R., 2021. "Investigating autonomous vehicle impacts on individual activity-travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 402-422.
    2. Bruna Habib Cavazza & Rodrigo Marçal Gandia & Fabio Antonialli & André Luiz Zambalde & Isabelle Nicolaï & Joel Yutaka Sugano & Arthur De Miranda Neto, 2019. "Management and business of autonomous vehicles: a systematic integrative bibliographic review," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 19(1/2), pages 31-54.
    3. Liu, Peng & Ma, Yanjiao & Zuo, Yaqing, 2019. "Self-driving vehicles: Are people willing to trade risks for environmental benefits?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 139-149.
    4. Penmetsa, Praveena & Adanu, Emmanuel Kofi & Wood, Dustin & Wang, Teng & Jones, Steven L., 2019. "Perceptions and expectations of autonomous vehicles – A snapshot of vulnerable road user opinion," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 9-13.
    5. Hess, David J., 2020. "Incumbent-led transitions and civil society: Autonomous vehicle policy and consumer organizations in the United States," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Liu, Peng & Zhang, Yawen & He, Zhen, 2019. "The effect of population age on the acceptable safety of self-driving vehicles," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 341-347.
    7. Weina Qu & Hongli Sun & Yan Ge, 2021. "The effects of trait anxiety and the big five personality traits on self-driving car acceptance," Transportation, Springer, vol. 48(5), pages 2663-2679, October.
    8. BERTRANDIAS, Laurent & LOWE, Ben & SADIK-ROZSNYAI, Orsolya & CARRICANO, Manu, 2021. "Delegating decision-making to autonomous products: A value model emphasizing the role of well-being," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    9. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    10. Teresa Brell & Ralf Philipsen & Martina Ziefle, 2019. "sCARy! Risk Perceptions in Autonomous Driving: The Influence of Experience on Perceived Benefits and Barriers," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 342-357, February.
    11. Schweitzer, Nicola & Hofmann, Rupert & Meinheit, Andreas, 2019. "Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 49-65.
    12. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    13. Liu, Peng & Xu, Zhigang & Zhao, Xiangmo, 2019. "Road tests of self-driving vehicles: Affective and cognitive pathways in acceptance formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 354-369.
    14. Asrar Ahmed Sabir & Iftikhar Ahmad & Hassan Ahmad & Muhammad Rafiq & Muhammad Asghar Khan & Neelum Noreen, 2023. "Consumer Acceptance and Adoption of AI Robo-Advisors in Fintech Industry," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    15. Samadzad, Mahdi & Nosratzadeh, Hossein & Karami, Hossein & Karami, Ali, 2023. "What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?," Transport Policy, Elsevier, vol. 136(C), pages 70-82.
    16. Adnan, Nadia & Md Nordin, Shahrina & bin Bahruddin, Mohamad Ariff & Ali, Murad, 2018. "How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 819-836.
    17. Apostolidis, Chrysostomos & Devine, Anthony & Jabbar, Abdul, 2022. "From chalk to clicks – The impact of (rapid) technology adoption on employee emotions in the higher education sector," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Woo, Seokkyun & Youtie, Jan & Ott, Ingrid & Scheu, Fenja, 2021. "Understanding the long-term emergence of autonomous vehicles technologies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    19. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian M. Müller, 2019. "Comparing Technology Acceptance for Autonomous Vehicles, Battery Electric Vehicles, and Car Sharing—A Study across Europe, China, and North America," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    2. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    3. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Thurner, Thomas & Fursov, Konstantin & Nefedova, Alena, 2022. "Early adopters of new transportation technologies: Attitudes of Russia’s population towards car sharing, the electric car and autonomous driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 403-417.
    5. Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
    6. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    7. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    8. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    9. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    10. Qianwen Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Low Purchase Willingness for Battery Electric Vehicles: Analysis and Simulation Based on the Fault Tree Model," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
    11. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    12. Gulzari, Adeela & Wang, Yuchen & Prybutok, Victor, 2022. "A green experience with eco-friendly cars: A young consumer electric vehicle rental behavioral model," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    13. Wenbo Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Household factors and adopting intention of battery electric vehicles: a multi-group structural equation model analysis among consumers in Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 945-960, June.
    14. Higueras-Castillo, Elena & Kalinic, Zoran & Marinkovic, Veljko & Liébana-Cabanillas, Francisco J., 2020. "A mixed analysis of perceptions of electric and hybrid vehicles," Energy Policy, Elsevier, vol. 136(C).
    15. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    16. Hasan, Saiful & Simsekoglu, Özlem, 2020. "The role of psychological factors on vehicle kilometer travelled (VKT) for battery electric vehicle (BEV) users," Research in Transportation Economics, Elsevier, vol. 82(C).
    17. Roemer, Ellen & Henseler, Jörg, 2022. "The dynamics of electric vehicle acceptance in corporate fleets: Evidence from Germany," Technology in Society, Elsevier, vol. 68(C).
    18. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    19. Simona Bigerna & Silvia Micheli, 2018. "Attitudes Toward Electric Vehicles: The Case of Perugia Using a Fuzzy Set Analysis," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    20. Eunsung Kim & Eunnyeong Heo, 2019. "Key Drivers behind the Adoption of Electric Vehicle in Korea: An Analysis of the Revealed Preferences," Sustainability, MDPI, vol. 11(23), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:116:y:2017:i:c:p:40-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.