IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v70y2010i2p183-190.html
   My bibliography  Save this article

Effects of simplifying choice tasks on estimates of taste heterogeneity in stated-choice surveys

Author

Listed:
  • Johnson, F. Reed
  • Ozdemir, Semra
  • Phillips, Kathryn A.

Abstract

Researchers usually employ orthogonal arrays or D-optimal designs with little or no attribute overlap in stated-choice surveys. The challenge is to balance statistical efficiency and respondent burden to minimize the overall error in the survey responses. This study examined whether simplifying the choice task, by using a design with more overlap, provides advantages over standard minimum-overlap methods. We administered two designs for eliciting HIV test preferences to split samples. Surveys were undertaken at four HIV testing locations in San Francisco, California. Personal characteristics had different effects on willingness to pay for the two treatments, and gains in statistical efficiency in the minimal-overlap version more than compensated for possible imprecision from increased measurement error.

Suggested Citation

  • Johnson, F. Reed & Ozdemir, Semra & Phillips, Kathryn A., 2010. "Effects of simplifying choice tasks on estimates of taste heterogeneity in stated-choice surveys," Social Science & Medicine, Elsevier, vol. 70(2), pages 183-190, January.
  • Handle: RePEc:eee:socmed:v:70:y:2010:i:2:p:183-190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277-9536(09)00697-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huber, Joel & Train, Kenneth, 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Department of Economics, Working Paper Series qt7zm4f51b, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    2. Swait, Joffre & Adamowicz, Wiktor, 2001. "The Influence of Task Complexity on Consumer Choice: A Latent Class Model of Decision Strategy Switching," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(1), pages 135-148, June.
    3. F. Reed Johnson & Melissa Ruby Banzhaf & William H. Desvousges, 2000. "Willingness to pay for improved respiratory and cardiovascular health: a multiple‐format, stated‐preference approach," Health Economics, John Wiley & Sons, Ltd., vol. 9(4), pages 295-317, June.
    4. Johnson, Eric J & Meyer, Robert J, 1984. "Compensatory Choice Models of Noncompensatory Processes: The Effect of Varying Context," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 11(1), pages 528-541, June.
    5. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    6. Hole, Arne Risa, 2008. "Modelling heterogeneity in patients' preferences for the attributes of a general practitioner appointment," Journal of Health Economics, Elsevier, vol. 27(4), pages 1078-1094, July.
    7. Chernev, Alex, 1997. "The Effect of Common Features on Brand Choice: Moderating Role of Attribute Importance," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 23(4), pages 304-311, March.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    9. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    10. Alan Diener & Bernie O'Brien & Amiram Gafni, 1998. "Health care contingent valuation studies: a review and classification of the literature," Health Economics, John Wiley & Sons, Ltd., vol. 7(4), pages 313-326, June.
    11. Hensher, David A. & Stopher, Peter R. & Louviere, Jordan J., 2001. "An exploratory analysis of the effect of numbers of choice sets in designed choice experiments: an airline choice application," Journal of Air Transport Management, Elsevier, vol. 7(6), pages 373-379.
    12. F. Reed Johnson & William H. Desvousges & Melissa C. Ruby & David Stieb & Paul De Civita, 1998. "Eliciting Stated Health Preferences," Medical Decision Making, , vol. 18(2_suppl), pages 57-67, April.
    13. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    14. DeShazo, J. R. & Fermo, German, 2002. "Designing Choice Sets for Stated Preference Methods: The Effects of Complexity on Choice Consistency," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 123-143, July.
    15. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D., 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304, September.
    16. Huber, Joel & Train, Kenneth, 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Department of Economics, Working Paper Series qt7zm4f51b, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    17. Arentze, Theo & Borgers, Aloys & Timmermans, Harry & DelMistro, Romano, 2003. "Transport stated choice responses: effects of task complexity, presentation format and literacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 229-244, May.
    18. John Rose & Iain Black, 2006. "Means matter, but variance matter too: Decomposing response latency influences on variance heterogeneity in stated preference experiments," Marketing Letters, Springer, vol. 17(4), pages 295-310, December.
    19. Louviere, Jordan J & Hensher, David A, 1983. "Using Discrete Choice Models with Experimental Design Data to Forecast Consumer Demand for a Unique Cultural Event," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(3), pages 348-361, December.
    20. Rosalie Viney & Elizabeth Savage & Jordan Louviere, 2005. "Empirical investigation of experimental design properties of discrete choice experiments in health care," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 349-362, April.
    21. Jan Abel Olsen & Richard D. Smith, 2001. "Theory versus practice: a review of ‘willingness‐to‐pay’ in health and health care," Health Economics, John Wiley & Sons, Ltd., vol. 10(1), pages 39-52, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finkelstein, Eric Andrew & Ozdemir, Semra & Malhotra, Chetna & Jafar, Tazeen H. & Choong Hui Lin, Lina & Gan Shien Wen, Sheryl, 2018. "Understanding factors that influence the demand for dialysis among elderly in a multi-ethnic Asian society," Health Policy, Elsevier, vol. 122(8), pages 915-921.
    2. Ostermann, Jan & Flaherty, Brian P. & Brown, Derek S. & Njau, Bernard & Hobbie, Amy M. & Mtuy, Tara B. & Masnick, Max & Mühlbacher, Axel C. & Thielman, Nathan M., 2021. "What factors influence HIV testing? Modeling preference heterogeneity using latent classes and class-independent random effects," Journal of choice modelling, Elsevier, vol. 40(C).
    3. Jui-Chen Yang & Shelby D. Reed & Steve Hass & Mark B. Skeen & F. Reed Johnson, 2021. "Is Easier Better Than Harder? An Experiment on Choice Experiments for Benefit-Risk Tradeoff Preferences," Medical Decision Making, , vol. 41(2), pages 222-232, February.
    4. Michael Clark & Domino Determann & Stavros Petrou & Domenico Moro & Esther Bekker-Grob, 2014. "Discrete Choice Experiments in Health Economics: A Review of the Literature," PharmacoEconomics, Springer, vol. 32(9), pages 883-902, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandy Ryan & Mabelle Amaya‐Amaya, 2005. "‘Threats’ to and hopes for estimating benefits," Health Economics, John Wiley & Sons, Ltd., vol. 14(6), pages 609-619, June.
    2. Yang, Jui-Chen & Johnson, F. Reed & Kilambi, Vikram & Mohamed, Ateesha F., 2015. "Sample size and utility-difference precision in discrete-choice experiments: A meta-simulation approach," Journal of choice modelling, Elsevier, vol. 16(C), pages 50-57.
    3. Hoyos, David, 2010. "The state of the art of environmental valuation with discrete choice experiments," Ecological Economics, Elsevier, vol. 69(8), pages 1595-1603, June.
    4. Rose, John M. & Hensher, David A. & Caussade, Sebastian & Ortúzar, Juan de Dios & Jou, Rong-Chang, 2009. "Identifying differences in willingness to pay due to dimensionality in stated choice experiments: a cross country analysis," Journal of Transport Geography, Elsevier, vol. 17(1), pages 21-29.
    5. Hoyos Ramos, David, 2010. "Using discrete choice experiments for environmental valuation," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    6. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    7. Fraser, Iain & Balcombe, Kelvin & Williams, Louis & McSorley, Eugene, 2021. "Preference stability in discrete choice experiments. Some evidence using eye-tracking," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    8. Stefanie Heinzle, 2012. "Disclosure of Energy Operating Cost Information: A Silver Bullet for Overcoming the Energy-Efficiency Gap?," Journal of Consumer Policy, Springer, vol. 35(1), pages 43-64, March.
    9. Elizabeth Kinter & Thomas Prior & Christopher Carswell & John Bridges, 2012. "A Comparison of Two Experimental Design Approaches in Applying Conjoint Analysis in Patient-Centered Outcomes Research," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 5(4), pages 279-294, December.
    10. John Rose & Iain Black, 2006. "Means matter, but variance matter too: Decomposing response latency influences on variance heterogeneity in stated preference experiments," Marketing Letters, Springer, vol. 17(4), pages 295-310, December.
    11. Richard Yao & Riccardo Scarpa & John Rose & James Turner, 2015. "Experimental Design Criteria and Their Behavioural Efficiency: An Evaluation in the Field," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 433-455, November.
    12. Martine Audibert & Yong He & Jacky Mathonnat, 2013. "Multinomial and Mixed Logit Modeling in the Presence of Heterogeneity: A Two-Period Comparison of Healthcare Provider Choice in Rural China," Working Papers halshs-00846085, HAL.
    13. Robert W. Paterson & Kevin J. Boyle & Christopher F. Parmeter & James E. Neumann & Paul De Civita, 2008. "Heterogeneity in preferences for smoking cessation," Health Economics, John Wiley & Sons, Ltd., vol. 17(12), pages 1363-1377.
    14. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    15. Andrew Collins & John Rose & Stephane Hess, 2012. "Interactive stated choice surveys: a study of air travel behaviour," Transportation, Springer, vol. 39(1), pages 55-79, January.
    16. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    17. Scarpa, Riccardo & Rose, John M., 2008. "Design efficiency for non-market valuation with choice modelling: how to measure it, what to report and why," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(3), pages 1-30.
    18. Julia Witt & Anthony Scott & Richard H. Osborne, 2009. "Designing choice experiments with many attributes. An application to setting priorities for orthopaedic waiting lists," Health Economics, John Wiley & Sons, Ltd., vol. 18(6), pages 681-696, June.
    19. Weng, Weizhe & Morrison, Mark & Boyle, Kevin & Boxall, Peter, 2017. "The effect of the number of alternatives in a choice experiment with an application to the Macquarie Marshes, AU," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252836, Southern Agricultural Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:70:y:2010:i:2:p:183-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.