IDEAS home Printed from https://ideas.repec.org/a/eee/soceco/v99y2022ics2214804322000714.html
   My bibliography  Save this article

We and It: An interdisciplinary review of the experimental evidence on how humans interact with machines

Author

Listed:
  • Chugunova, Marina
  • Sele, Daniela

Abstract

Today, humans interact with automation frequently and in a variety of settings ranging from private to professional. Their behavior in these interactions has attracted considerable research interest across several fields, with sometimes little exchange among them and seemingly inconsistent findings. In this article, we review 138 experimental studies on how people interact with automated agents, that can assume different roles. We synthesize the evidence, suggest ways to reconcile inconsistencies between studies and disciplines, and discuss organizational and societal implications. The reviewed studies show that people react to automated agents differently than they do to humans: In general, they behave more rationally, and seem less prone to emotional and social responses, though this may be mediated by the agents’ design. Task context, performance expectations and the distribution of decision authority between humans and automated agents are all factors that systematically impact the willingness to accept automated agents in decision-making - that is, humans seem willing to (over-)rely on algorithmic support, yet averse to fully ceding their decision authority. The impact of these behavioral regularities for the deliberation of the benefits and risks of automation in organizations and society is discussed.

Suggested Citation

  • Chugunova, Marina & Sele, Daniela, 2022. "We and It: An interdisciplinary review of the experimental evidence on how humans interact with machines," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 99(C).
  • Handle: RePEc:eee:soceco:v:99:y:2022:i:c:s2214804322000714
    DOI: 10.1016/j.socec.2022.101897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214804322000714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socec.2022.101897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitchell Hoffman & Lisa B Kahn & Danielle Li, 2018. "Discretion in Hiring," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 765-800.
    2. March, Christoph, 2019. "The behavioral economics of artificial intelligence: Lessons from experiments with computer players," BERG Working Paper Series 154, Bamberg University, Bamberg Economic Research Group.
    3. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    4. Brice Corgnet, 2018. "Rac(g)e Against the Machine? Social Incentives When Humans Meet Robots," Post-Print halshs-01984467, HAL.
    5. Bo Cowgill & Fabrizio Dell'Acqua & Sandra Matz, 2020. "The Managerial Effects of Algorithmic Fairness Activism," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 85-90, May.
    6. McCabe, Kevin & Houser, Daniel & Ryan, Lee & Smith, Vernon & Trouard, Ted, 2001. "A Functional Imaging Study of Cooperation in Two-Person reciprocal Exchange," MPRA Paper 5172, University Library of Munich, Germany.
    7. Stefano DellaVigna & John A. List & Ulrike Malmendier, 2012. "Testing for Altruism and Social Pressure in Charitable Giving," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(1), pages 1-56.
    8. Alexandre Mas & Enrico Moretti, 2009. "Peers at Work," American Economic Review, American Economic Association, vol. 99(1), pages 112-145, March.
    9. Iyad Rahwan & Jacob W. Crandall & Jean-François Bonnefon, 2020. "Intelligent machines as social catalysts," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(14), pages 7555-7557, April.
    10. Chiara Longoni & Andrea Bonezzi & Carey K Morewedge, 2019. "Resistance to Medical Artificial Intelligence," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(4), pages 629-650.
    11. Florian Ederer & Richard Holden & Margaret Meyer, 2018. "Gaming and strategic opacity in incentive provision," RAND Journal of Economics, RAND Corporation, vol. 49(4), pages 819-854, December.
    12. Farjam, Mike & Kirchkamp, Oliver, 2018. "Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading," Journal of Economic Behavior & Organization, Elsevier, vol. 146(C), pages 248-269.
    13. James Andreoni & Justin M. Rao & Hannah Trachtman, 2017. "Avoiding the Ask: A Field Experiment on Altruism, Empathy, and Charitable Giving," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 625-653.
    14. Gogoll, Jan & Uhl, Matthias, 2018. "Rage against the machine: Automation in the moral domain," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 74(C), pages 97-103.
    15. Kirchkamp, Oliver & Strobel, Christina, 2019. "Sharing responsibility with a machine," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 80(C), pages 25-33.
    16. Alain Cohn & Tobias Gesche & Michel André Maréchal, 2022. "Honesty in the Digital Age," Management Science, INFORMS, vol. 68(2), pages 827-845, February.
    17. Victoria A. Shaffer & C. Adam Probst & Edgar C. Merkle & Hal R. Arkes & Mitchell A. Medow, 2013. "Why Do Patients Derogate Physicians Who Use a Computer-Based Diagnostic Support System?," Medical Decision Making, , vol. 33(1), pages 108-118, January.
    18. Xueming Luo & Siliang Tong & Zheng Fang & Zhe Qu, 2019. "Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases," Marketing Science, INFORMS, vol. 38(6), pages 937-947, November.
    19. Nils Köbis & Jean-François Bonnefon & Iyad Rahwan, 2021. "Bad machines corrupt good morals," Nature Human Behaviour, Nature, vol. 5(6), pages 679-685, June.
    20. Efendić, Emir & Van de Calseyde, Philippe P.F.M. & Evans, Anthony M., 2020. "Slow response times undermine trust in algorithmic (but not human) predictions," Organizational Behavior and Human Decision Processes, Elsevier, vol. 157(C), pages 103-114.
    21. Hal R. Arkes & Victoria A. Shaffer & Mitchell A. Medow, 2007. "Patients Derogate Physicians Who Use a Computer-Assisted Diagnostic Aid," Medical Decision Making, , vol. 27(2), pages 189-202, March.
    22. Schniter, E. & Shields, T.W. & Sznycer, D., 2020. "Trust in humans and robots: Economically similar but emotionally different," Journal of Economic Psychology, Elsevier, vol. 78(C).
    23. Logg, Jennifer M. & Minson, Julia A. & Moore, Don A., 2019. "Algorithm appreciation: People prefer algorithmic to human judgment," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 90-103.
    24. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    25. Andrew Prahl & Lyn Van Swol, 2017. "Understanding algorithm aversion: When is advice from automation discounted?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(6), pages 691-702, September.
    26. Sören Krach & Frank Hegel & Britta Wrede & Gerhard Sagerer & Ferdinand Binkofski & Tilo Kircher, 2008. "Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-11, July.
    27. Aleksandr Alekseev, 2020. "The Economics of Babysitting a Robot," Working Papers 20-29, Chapman University, Economic Science Institute.
    28. Marc T. P. Adam & Timm Teubner & Henner Gimpel, 2018. "No Rage Against the Machine: How Computer Agents Mitigate Human Emotional Processes in Electronic Negotiations," Group Decision and Negotiation, Springer, vol. 27(4), pages 543-571, August.
    29. Berkeley J. Dietvorst & Joseph P. Simmons & Cade Massey, 2018. "Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them," Management Science, INFORMS, vol. 64(3), pages 1155-1170, March.
    30. repec:feb:framed:0087 is not listed on IDEAS
    31. M. Kate Bundorf & Maria Polyakova & Ming Tai-Seale, 2019. "How do Humans Interact with Algorithms? Experimental Evidence from Health Insurance," NBER Working Papers 25976, National Bureau of Economic Research, Inc.
    32. Till Feier & Jan Gogoll & Matthias Uhl, 2021. "Hiding Behind Machines: When Blame Is Shifted to Artificial Agents," Papers 2101.11465, arXiv.org.
    33. Mark V. Pezzo & Stephanie P. Pezzo, 2006. "Physician Evaluation after Medical Errors: Does Having a Computer Decision Aid Help or Hurt in Hindsight?," Medical Decision Making, , vol. 26(1), pages 48-56, January.
    34. Daniel Paravisini & Antoinette Schoar, 2013. "The Incentive Effect of Scores: Randomized Evidence from Credit Committees," NBER Working Papers 19303, National Bureau of Economic Research, Inc.
    35. Brice Corgnet, 2018. "Rac(g)e Against the Machine? Social Incentives When Humans Meet Robots," Post-Print halshs-01984467, HAL.
    36. Filiz, Ibrahim & Judek, Jan René & Lorenz, Marco & Spiwoks, Markus, 2021. "Reducing algorithm aversion through experience," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    37. Naquin, Charles E. & Kurtzberg, Terri R., 2004. "Human reactions to technological failure: How accidents rooted in technology vs. human error influence judgments of organizational accountability," Organizational Behavior and Human Decision Processes, Elsevier, vol. 93(2), pages 129-141, March.
    38. Margaret L. Traeger & Sarah Strohkorb Sebo & Malte Jung & Brian Scassellati & Nicholas A. Christakis, 2020. "Vulnerable robots positively shape human conversational dynamics in a human–robot team," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(12), pages 6370-6375, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Sele & Marina Chugunova, 2023. "Putting a Human in the Loop: Increasing Uptake, but Decreasing Accuracy of Automated Decision-Making," Rationality and Competition Discussion Paper Series 438, CRC TRR 190 Rationality and Competition.
    2. Liu, Fanjue & Lee, Yu-Hao, 2024. "Virtually responsible? Attribution of responsibility toward human vs. virtual influencers and the mediating role of mind perception," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    3. Dreyfuss, Bnaya & Heffetz, Ori & Hoffman, Guy & Ishai, Guy & Kshirsagar, Alap, 2024. "Additive vs. subtractive earning in shared human-robot work environments," Journal of Economic Behavior & Organization, Elsevier, vol. 217(C), pages 692-704.
    4. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    5. Maggioni, Mario A. & Rossignoli, Domenico, 2023. "If it looks like a human and speaks like a human ... Communication and cooperation in strategic Human–Robot interactions," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 104(C).
    6. Vomberg, Arnd & Schauerte, Nico & Krakowski, Sebastian & Ingram Bogusz, Claire & Gijsenberg, Maarten J. & Bleier, Alexander, 2023. "The cold-start problem in nascent AI strategy: Kickstarting data network effects," Journal of Business Research, Elsevier, vol. 168(C).
    7. Gorny, Paul M. & Groos, Eva & Strobel, Christina, 2024. "Do Personalized AI Predictions Change Subsequent Decision-Outcomes? The Impact of Human Oversight," MPRA Paper 121065, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brice Corgnet, 2023. "An Experimental Test of Algorithmic Dismissals," Working Papers 2302, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    2. Mahmud, Hasan & Islam, A.K.M. Najmul & Ahmed, Syed Ishtiaque & Smolander, Kari, 2022. "What influences algorithmic decision-making? A systematic literature review on algorithm aversion," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Nils Köbis & Jean-François Bonnefon & Iyad Rahwan, 2021. "Bad machines corrupt good morals," Nature Human Behaviour, Nature, vol. 5(6), pages 679-685, June.
    4. March, Christoph, 2021. "Strategic interactions between humans and artificial intelligence: Lessons from experiments with computer players," Journal of Economic Psychology, Elsevier, vol. 87(C).
    5. Iván Barreda-Tarrazona & Ainhoa Jaramillo-Gutiérrez & Marina Pavan & Gerardo Sabater-Grande, 2021. "The “Human Factor” in Prisoner’s Dilemma Cooperation," Working Papers 2021/10, Economics Department, Universitat Jaume I, Castellón (Spain).
    6. Zulia Gubaydullina & Jan René Judek & Marco Lorenz & Markus Spiwoks, 2022. "Comparing Different Kinds of Influence on an Algorithm in Its Forecasting Process and Their Impact on Algorithm Aversion," Businesses, MDPI, vol. 2(4), pages 1-23, October.
    7. Mahmud, Hasan & Islam, A.K.M. Najmul & Mitra, Ranjan Kumar, 2023. "What drives managers towards algorithm aversion and how to overcome it? Mitigating the impact of innovation resistance through technology readiness," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    8. Pascal Oliver Heßler & Jella Pfeiffer & Sebastian Hafenbrädl, 2022. "When Self-Humanization Leads to Algorithm Aversion," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(3), pages 275-292, June.
    9. Bauer, Kevin & von Zahn, Moritz & Hinz, Oliver, 2022. "Expl(AI)ned: The impact of explainable Artificial Intelligence on cognitive processes," SAFE Working Paper Series 315, Leibniz Institute for Financial Research SAFE, revised 2022.
    10. Tse, Tiffany Tsz Kwan & Hanaki, Nobuyuki & Mao, Bolin, 2024. "Beware the performance of an algorithm before relying on it: Evidence from a stock price forecasting experiment," Journal of Economic Psychology, Elsevier, vol. 102(C).
    11. Zhu, Yimin & Zhang, Jiemin & Wu, Jifei & Liu, Yingyue, 2022. "AI is better when I'm sure: The influence of certainty of needs on consumers' acceptance of AI chatbots," Journal of Business Research, Elsevier, vol. 150(C), pages 642-652.
    12. Benedikt Berger & Martin Adam & Alexander Rühr & Alexander Benlian, 2021. "Watch Me Improve—Algorithm Aversion and Demonstrating the Ability to Learn," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(1), pages 55-68, February.
    13. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    14. Mario A. Maggioni & Domenico Rossignoli, 2021. "If it Looks like a Human and Speaks like a Human..," DISEIS - Quaderni del Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo dis2101, Università Cattolica del Sacro Cuore, Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo (DISEIS).
    15. Scott Schanke & Gordon Burtch & Gautam Ray, 2021. "Estimating the Impact of “Humanizing” Customer Service Chatbots," Information Systems Research, INFORMS, vol. 32(3), pages 736-751, September.
    16. Kevin Bauer & Andrej Gill, 2024. "Mirror, Mirror on the Wall: Algorithmic Assessments, Transparency, and Self-Fulfilling Prophecies," Information Systems Research, INFORMS, vol. 35(1), pages 226-248, March.
    17. Peng, Leiqing & Luo, Mengting & Guo, Yulang, 2023. "Deposit AI as the “invisible hand†to make the resale easier: A moderated mediation model," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    18. Mario A. Maggioni & Domenico Rossignoli, 2021. "If it Looks like a Human and Speaks like a Human ... Dialogue and cooperation in human-robot interactions," Papers 2104.11652, arXiv.org, revised May 2021.
    19. Alexia GAUDEUL & Caterina GIANNETTI, 2023. "Trade-offs in the design of financial algorithms," Discussion Papers 2023/288, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    20. Said Kaawach & Oskar Kowalewski & Oleksandr Talavera, 2023. "Automatic vs Manual Investing: Role of Past Performance," Discussion Papers 23-04, Department of Economics, University of Birmingham.

    More about this item

    Keywords

    Automation; Human-computer interaction; Human-machine interaction; Algorithmic decision making; Experimental evidence; Literature review;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceco:v:99:y:2022:i:c:s2214804322000714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620175 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.