IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120308972.html
   My bibliography  Save this article

The synergy between stakeholders for cellulosic biofuel development: Perspectives, opportunities, and barriers

Author

Listed:
  • Leibensperger, Carrie
  • Yang, Pan
  • Zhao, Qiankun
  • Wei, Shuran
  • Cai, Ximing

Abstract

While understanding individual stakeholders' perspectives on the adoption and conversion to a biofuel-based landscape has been a subject of many previous studies on biofuels, there has been relatively little attention given to understanding how the interaction between multiple stakeholders involved in biofuel development could influence the widespread adoption of biofuel production. This paper analyzes the key stakeholder interactions utilizing various data sources including survey results, social media posts, and empirical and theoretical analyses. An intensive review is conducted for a number of surveys and research papers on different aspects of biofuel development such as land use choices, biorefinery and transportation, infrastructure development, consumer priorities, environmental impacts, etc. Following that, a stakeholder synergy approach is applied to synthesizing typical responses of stakeholders, such as producers, consumers, biorefineries, rural communities, and the government, and discussing how their responses influence each other's decisions and the overall system performance. Based on the findings of inadequate stakeholder synergy, it is recommended that new surveys and further research should be conducted to understand why synergy between stakeholders in biofuel development is absent. Additionally, this paper provides research perspectives, including (1) applying cutting-edge text-mining techniques to conduct sentiment analysis, and research and public attention analysis; (2) using an agent-based model to simulate stakeholder interactions and understand the factors that influence stakeholder synergy and the emergence of a bioeconomy.

Suggested Citation

  • Leibensperger, Carrie & Yang, Pan & Zhao, Qiankun & Wei, Shuran & Cai, Ximing, 2021. "The synergy between stakeholders for cellulosic biofuel development: Perspectives, opportunities, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308972
    DOI: 10.1016/j.rser.2020.110613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Ruiqing & Khanna, Madhu, 2017. "Costs of meeting a cellulosic biofuel mandate with perennial energy crops: Implications for policy," Energy Economics, Elsevier, vol. 64(C), pages 321-334.
    2. Zabihollah Rezaee, 2018. "Supply Chain Management and Business Sustainability Synergy: A Theoretical and Integrated Perspective," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    3. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    4. Ruiqing Miao & Madhu Khanna, 2017. "Effectiveness of the Biomass Crop Assistance Program: Roles of Behavioral Factors, Credit Constraint, and Program Design," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(4), pages 584-608.
    5. Madhu Khanna & Jordan Louviere & Xi Yang, 2017. "Motivations to grow energy crops: the role of crop and contract attributes," Agricultural Economics, International Association of Agricultural Economists, vol. 48(3), pages 263-277, May.
    6. Van de Velde, Liesbeth & Verbeke, Wim & Popp, Michael & Buysse, Jeroen & Van Huylenbroeck, Guido, 2009. "Perceived importance of fuel characteristics and its match with consumer beliefs about biofuels in Belgium," Energy Policy, Elsevier, vol. 37(8), pages 3183-3193, August.
    7. Smith, David J. & Schulman, Candi & Current, Dean & Easter, K. William, 2011. "Willingness of Agricultural Landowners to Supply Perennial Energy Crops," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103930, Agricultural and Applied Economics Association.
    8. Bergtold, Jason S. & Fewell, Jason E. & Williams, Jeffery R., 2011. "Farmers’ Willingness to Grow Sweet Sorghum as a Cellulosic Bioenergy Crop: A Stated Choice Approach," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 108068, Agricultural and Applied Economics Association.
    9. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    10. Stummer, Christian & Kiesling, Elmar & Günther, Markus & Vetschera, Rudolf, 2015. "Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 157-167.
    11. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    12. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    13. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2011. "Farmers’ Willingness to Grow Switchgrass as a Cellulosic Bioenergy Crop: A Stated Choice Approach," 2011 Annual Meeting, June 29-July 1, 2011, Banff, Alberta,Canada 109776, Western Agricultural Economics Association.
    14. Dwivedi, Puneet & Alavalapati, Janaki R.R., 2009. "Stakeholders' perceptions on forest biomass-based bioenergy development in the southern US," Energy Policy, Elsevier, vol. 37(5), pages 1999-2007, May.
    15. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    16. Huang, Shiyang & Hu, Guiping & Chennault, Carrie & Su, Liu & Brandes, Elke & Heaton, Emily & Schulte, Lisa & Wang, Lizhi & Tyndall, John, 2016. "Agent-based modeling of bioenergy crop adoption and farmer decision-making," Energy, Elsevier, vol. 115(P1), pages 1188-1201.
    17. A.J. Villanueva & M. Rodríguez-Entrena & M. Arriaza & J.A. Gómez-Limón, 2017. "Heterogeneity of farmers' preferences towards agri-environmental schemes across different agricultural subsystems," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(4), pages 684-707, April.
    18. Harry de Gorter & David R. Just, 2010. "The Social Costs and Benefits of Biofuels: The Intersection of Environmental, Energy and Agricultural Policy," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(1), pages 4-32.
    19. Delshad, Ashlie B. & Raymond, Leigh & Sawicki, Vanessa & Wegener, Duane T., 2010. "Public attitudes toward political and technological options for biofuels," Energy Policy, Elsevier, vol. 38(7), pages 3414-3425, July.
    20. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    21. Zhao, Qiankun & Cai, Ximing & Mischo, William & Ma, Liyuan, 2020. "How do the research and public communities view biofuel development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    22. Alexander, Corinne & Ivanic, Rasto & Rosch, Stephanie & Tyner, Wallace & Wu, Steven Y. & Yoder, Joshua R., 2012. "Contract theory and implications for perennial energy crop contracting," Energy Economics, Elsevier, vol. 34(4), pages 970-979.
    23. Hassan, Shady S. & Williams, Gwilym A. & Jaiswal, Amit K., 2019. "Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 590-599.
    24. Caterina Tantalo & Richard L. Priem, 2016. "Value creation through stakeholder synergy," Strategic Management Journal, Wiley Blackwell, vol. 37(2), pages 314-329, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Noe Aguilar Rivera, 2022. "Sustainable Biofuels. Strategy for Growth and Energy Security," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(3), pages 1-29, Julio - S.
    3. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    4. Pin, Lantos A. & Pennink, Bartjan J.W. & Balsters, Herman & Sianipar, Corinthias P.M., 2021. "Technological appropriateness of biomass production in rural settings: Addressing water hyacinths (E. crassipes) problem in Lake Tondano, Indonesia," Technology in Society, Elsevier, vol. 66(C).
    5. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Aleksandras Chlebnikovas & Dainius Paliulis & Artūras Kilikevičius & Jaroslaw Selech & Jonas Matijošius & Kristina Kilikevičienė & Darius Vainorius, 2021. "Possibilities and Generated Emissions of Using Wood and Lignin Biofuel for Heat Production," Energies, MDPI, vol. 14(24), pages 1-18, December.
    7. Ebadi Torkayesh, Ali & Hendiani, Sepehr & Walther, Grit & Venghaus, Sandra, 2024. "Fueling the future: Overcoming the barriers to market development of renewable fuels in Germany using a novel analytical approach," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1012-1033.
    8. repec:ags:aaea22:335923 is not listed on IDEAS
    9. João A. Pinto & Isabel P. Fernandes & Virginia D. Pinto & Elson Gomes & Cátia F. Oliveira & Paula C. R. Pinto & Luís M. R. Mesquita & Paulo A. G. Piloto & Alírio E. Rodrigues & Maria-Filomena Barreiro, 2021. "Valorization of Lignin Side-Streams into Polyols and Rigid Polyurethane Foams—A Contribution to the Pulp and Paper Industry Biorefinery," Energies, MDPI, vol. 14(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Pan & Cai, Ximing & Hu, Xinchen & Zhao, Qiankun & Lee, Yuanyao & Khanna, Madhu & Cortés-Peña, Yoel R. & Guest, Jeremy S. & Kent, Jeffrey & Hudiburg, Tara W. & Du, Erhu & John, Steve & Iutzi, Fre, 2022. "An agent-based modeling tool supporting bioenergy and bio-product community communication regarding cellulosic bioeconomy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Mohit Anand & Ruiqing Miao & Madhu Khanna, 2019. "Adopting bioenergy crops: Does farmers’ attitude toward loss matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 50(4), pages 435-450, July.
    3. Galik, Christopher S., 2015. "Exploring the determinants of emerging bioenergy market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 107-116.
    4. van Dijk, Mathilde & Goedegebure, Robert & Nap, Jan-Peter, 2024. "Public acceptance of biomass for bioenergy: The need for feedstock differentiation and communicating a waste utilization frame," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Miao, Ruiqing & Khanna, Madhu, 2017. "Costs of meeting a cellulosic biofuel mandate with perennial energy crops: Implications for policy," Energy Economics, Elsevier, vol. 64(C), pages 321-334.
    6. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    7. McCarty, Tanner & Sesmero, Juan, 2021. "Contracting for perennial energy crops and the cost-effectiveness of the Biomass Crop Assistance Program," Energy Policy, Elsevier, vol. 149(C).
    8. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    9. Van Dael, Miet & Lizin, Sebastien & Swinnen, Gilbert & Van Passel, Steven, 2017. "Young people’s acceptance of bioenergy and the influence of attitude strength on information provision," Renewable Energy, Elsevier, vol. 107(C), pages 417-430.
    10. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    11. Mamine, Fateh & Fares, M'hand & Minviel, Jean Joseph, 2020. "Contract Design for Adoption of Agrienvironmental Practices: A Meta-analysis of Discrete Choice Experiments," Ecological Economics, Elsevier, vol. 176(C).
    12. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    14. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    15. Julia Wenger & Georg Jäger & Annukka Näyhä & Simon Plakolb & Paul Erich Krassnitzer & Tobias Stern, 2024. "Exploring potential diffusion pathways of biorefinery innovations—An agent‐based simulation approach for facilitating shared value creation," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4652-4693, July.
    16. repec:ags:aaea22:335923 is not listed on IDEAS
    17. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Blanc, Elena & Hudiburg, Tara & DeLucia, Evan, 2020. "Designing payments for GHG mitigation to induce low carbon bioenergy production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304394, Agricultural and Applied Economics Association.
    18. Dalemans, Floris & Muys, Bart & Maertens, Miet, 2019. "Adoption Constraints for Small-scale Agroforestry-based Biofuel Systems in India," Ecological Economics, Elsevier, vol. 157(C), pages 27-39.
    19. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    20. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
    21. Balogh, P. & Bai, A. & Popp, J. & Huzsvai, L. & Jobbágy, P., 2015. "Internet-orientated Hungarian car drivers’ knowledge and attitudes towards biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 17-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.