IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v72y2018icp65-73.html
   My bibliography  Save this article

Land use change and the carbon debt for sugarcane ethanol production in Brazil

Author

Listed:
  • Alkimim, Akenya
  • Clarke, Keith C.

Abstract

Farming sugarcane, as a renewable source of ethanol for use as a fuel, is a common practice in Brazilian agriculture. Despite being renewable, whether ethanol use actually reduces greenhouse gas (GHG) emissions depends on how the sugarcane is produced. Studies have shown that land use changes due to sugarcane farming are responsible for a substantial amount of the carbon emitted into the atmosphere, and may be equivalent to, or even greater than, the great “villains” of global warming–the fossil fuels. In the context of climate change, are there alternative land use changes that could create a lower overall carbon debt for ethanol and sugarcane production? In attempting to answer this question, this study aimed to: (i) map carbon stocks in the Brazilian biomes; (ii) quantify the carbon loss under different scenarios of land use changes for sugarcane-ethanol production; (iii) calculate the payback time for land conversion to sugarcane; and (iv) quantify the current areas of cultivated and degraded pasture by biome. The results show that the carbon debt from the deforestation of Brazilian biomes for ethanol production is equivalent to 608 Mg CO2 ha−1 for the Amazon, 142 Mg CO2 ha−1 for the Cerrado and 212 Mg CO2 ha−1 for the Atlantic Forest with respective payback times of 62, 15 and 22 years. However, carbon emitted from the conversion of existing pasture land to sugarcane production rather than forest would be much smaller, with a shorter payback time. We conclude that pasturelands, especially those already degraded, would be the most suitable areas for land conversion to sugarcane production for ethanol. Pasture recovery would increase carbon stocks, reduce GHG emissions and reduce the negative direct and indirect land use changes associated with sugarcane expansion in Brazil.

Suggested Citation

  • Alkimim, Akenya & Clarke, Keith C., 2018. "Land use change and the carbon debt for sugarcane ethanol production in Brazil," Land Use Policy, Elsevier, vol. 72(C), pages 65-73.
  • Handle: RePEc:eee:lauspo:v:72:y:2018:i:c:p:65-73
    DOI: 10.1016/j.landusepol.2017.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837716309607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2017.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerd Sparovek & Alberto Barretto & Goran Berndes & Sergio Martins & Rodrigo Maule, 2009. "Environmental, land-use and economic implications of Brazilian sugarcane expansion 1996–2006," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(3), pages 285-298, March.
    2. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    3. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    4. Francisco F. C. Mello & Carlos E. P. Cerri & Christian A. Davies & N. Michele Holbrook & Keith Paustian & Stoécio M. F. Maia & Marcelo V. Galdos & Martial Bernoux & Carlos C. Cerri, 2014. "Payback time for soil carbon and sugar-cane ethanol," Nature Climate Change, Nature, vol. 4(7), pages 605-609, July.
    5. Georgia Carvalho & Paulo Moutinho & Daniel Nepstad & Luciano Mattos & Márcio Santilli, 2004. "AN Amazon Perspective on the Forest-Climate Connection: Opportunity for Climate Mitigation, Conservation and Development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 163-174, March.
    6. Azadi, Hossein & de Jong, Sanne & Derudder, Ben & De Maeyer, Philippe & Witlox, Frank, 2012. "Bitter sweet: How sustainable is bio-ethanol production in Brazil?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3599-3603.
    7. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    8. Eric A. Davidson & Alessandro C. de Araújo & Paulo Artaxo & Jennifer K. Balch & I. Foster Brown & Mercedes M. C. Bustamante & Michael T. Coe & Ruth S. DeFries & Michael Keller & Marcos Longo & J. Will, 2012. "The Amazon basin in transition," Nature, Nature, vol. 481(7381), pages 321-328, January.
    9. Marcos Adami & Bernardo Friedrich Theodor Rudorff & Ramon Morais Freitas & Daniel Alves Aguiar & Luciana Miura Sugawara & Marcio Pupin Mello, 2012. "Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil," Sustainability, MDPI, vol. 4(4), pages 1-12, April.
    10. Goldemberg, José & Guardabassi, Patricia, 2009. "Are biofuels a feasible option?," Energy Policy, Elsevier, vol. 37(1), pages 10-14, January.
    11. R. A. Houghton & D. L. Skole & Carlos A. Nobre & J. L. Hackler & K. T. Lawrence & W H. Chomentowski, 2000. "Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon," Nature, Nature, vol. 403(6767), pages 301-304, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongyang Xiao & Haipeng Niu & Jin Guo & Suxia Zhao & Liangxin Fan, 2021. "Carbon Storage Change Analysis and Emission Reduction Suggestions under Land Use Transition: A Case Study of Henan Province, China," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    2. Tamires Maiara Ercole & João Bosco Vasconcellos Gomes & Antônio Carlos Vargas Motta & Mozart Martins Ferreira & Alberto Vasconcellos Inda & Marcelo Mancini & Nilton Curi, 2023. "Aggregation Stability and Carbon Pools in Extremely Kaolinitic Soils from the East Coast of Brazil as Affected by Land Use Changes," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    3. Luis Ramirez Camargo & Gabriel Castro & Katharina Gruber & Jessica Jewell & Michael Klingler & Olga Turkovska & Elisabeth Wetterlund & Johannes Schmidt, 2022. "Pathway to a land-neutral expansion of Brazilian renewable fuel production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    5. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    6. Ivan Vera & Birka Wicke & Floor van der Hilst, 2020. "Spatial Variation in Environmental Impacts of Sugarcane Expansion in Brazil," Land, MDPI, vol. 9(10), pages 1-20, October.
    7. Wu, Si & Hu, Shougeng & Frazier, Amy E., 2021. "Spatiotemporal variation and driving factors of carbon emissions in three industrial land spaces in China from 1997 to 2016," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    8. Júlia Graziela da Silveira & Sílvio Nolasco de Oliveira Neto & Ana Carolina Barbosa do Canto & Fernanda Figueiredo Granja Dorilêo Leite & Fernanda Reis Cordeiro & Luís Tadeu Assad & Gabriela Cristina , 2022. "Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    9. Lorenzo Di Lucia & Barbara Ribeiro, 2018. "Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    10. Gustavo V. Popin & Arthur K. B. Santos & Thiago de P. Oliveira & Plínio B. Camargo & Carlos E. P. Cerri & Marcos Siqueira-Neto, 2020. "Sugarcane straw management for bioenergy: effects of global warming on greenhouse gas emissions and soil carbon storage," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 559-577, April.
    11. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    2. Saraly Andrade de Sá & Charles Palmer & Stefanie Engel, 2012. "Ethanol Production, Food and Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 1-21, January.
    3. Keles, Derya & Choumert-Nkolo, Johanna & Combes Motel, Pascale & Nazindigouba Kéré, Eric, 2018. "Does the expansion of biofuels encroach on the forest?," Journal of Forest Economics, Elsevier, vol. 33(C), pages 75-82.
    4. Lange, Mareike, 2011. "The GHG balance of biofuels taking into account land use change," Energy Policy, Elsevier, vol. 39(5), pages 2373-2385, May.
    5. de Andrade Junior, Milton Aurelio Uba & Valin, Hugo & Soterroni, Aline C. & Ramos, Fernando M. & Halog, Anthony, 2019. "Exploring future scenarios of ethanol demand in Brazil and their land-use implications," Energy Policy, Elsevier, vol. 134(C).
    6. Goetz, Ariane & German, Laura & Hunsberger, Carol & Schmidt, Oscar, 2017. "Do no harm? Risk perceptions in national bioenergy policies and actual mitigation performance," Energy Policy, Elsevier, vol. 108(C), pages 776-790.
    7. Ivan Vera & Birka Wicke & Floor van der Hilst, 2020. "Spatial Variation in Environmental Impacts of Sugarcane Expansion in Brazil," Land, MDPI, vol. 9(10), pages 1-20, October.
    8. Siegmeier, Torsten & Möller, Detlev, 2013. "Mapping research at the intersection of organic farming and bioenergy — A scientometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 197-204.
    9. Filoso, Solange & Carmo, Janaina Braga do & Mardegan, Sílvia Fernanda & Lins, Silvia Rafaela Machado & Gomes, Taciana Figueiredo & Martinelli, Luiz Antonio, 2015. "Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1847-1856.
    10. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    11. Andrade de Sá, Saraly & Palmer, Charles & di Falco, Salvatore, 2013. "Dynamics of indirect land-use change: Empirical evidence from Brazil," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 377-393.
    12. Galdos, Marcelo & Cavalett, Otávio & Seabra, Joaquim E.A. & Nogueira, Luiz Augusto Horta & Bonomi, Antonio, 2013. "Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions," Applied Energy, Elsevier, vol. 104(C), pages 576-582.
    13. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    14. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    15. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.
    16. Oliveira, Gustavo de L.T. & McKay, Ben & Plank, Christina, 2017. "How biofuel policies backfire: Misguided goals, inefficient mechanisms, and political-ecological blind spots," Energy Policy, Elsevier, vol. 108(C), pages 765-775.
    17. May, Peter H. & Soares-Filho, Britaldo Silveira & Strand, Jon, 2013. "How much is the Amazon worth ? the state of knowledge concerning the value of preserving amazon rainforests," Policy Research Working Paper Series 6668, The World Bank.
    18. Kim, GwanSeon & Choi, Sun-Ki & Seok, Jun Ho, 2020. "Does biomass energy consumption reduce total energy CO2 emissions in the US?," Journal of Policy Modeling, Elsevier, vol. 42(5), pages 953-967.
    19. Chen, Hong-Ge & Zhang, Y.-H. Percival, 2015. "New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 117-132.
    20. Arnaldo Walter & Marcelo Valadares Galdos & Fabio Vale Scarpare & Manoel Regis Lima Verde Leal & Joaquim Eugênio Abel Seabra & Marcelo Pereira da Cunha & Michelle Cristina Araujo Picoli & Camila Ortol, 2014. "Brazilian sugarcane ethanol: developments so far and challenges for the future," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 70-92, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:72:y:2018:i:c:p:65-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.