IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i10p397-d431980.html
   My bibliography  Save this article

Spatial Variation in Environmental Impacts of Sugarcane Expansion in Brazil

Author

Listed:
  • Ivan Vera

    (Group Energy & Resources, Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

  • Birka Wicke

    (Group Energy & Resources, Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

  • Floor van der Hilst

    (Group Energy & Resources, Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

Abstract

In the past decades, sugarcane production in Brazil has expanded rapidly to meet increasing ethanol demand. The large majority of this expansion occurred in Sao Paulo state. We used an integrated approach considering location-specific biophysical characteristics to determine the environmental impacts of sugarcane expansion and their spatial variation in Sao Paulo state (2004–2015). The included environmental impacts are greenhouse gas (GHG) emissions, biodiversity, soil erosion, and water quantity. All impacts were integrated into a single environmental performance index to determine trade-offs between impacts. Our results show a strong spatial variation in environmental impacts and trade-offs between them. The magnitude and direction of these impacts are mostly driven by the type of land use change and by the heterogeneity of the biophysical conditions. Areas where expansion of sugar cane has resulted in mostly negative environmental impacts are located in the center and east of the state (related to the change of shrublands, eucalyptus, and forest), while areas where sugar cane expansion has resulted in positive impacts are located in the center-west and north (related to the change of annual crops). Identifying areas with mainly positive and negative impacts enables the development of strategies to mitigate negative effects and enhance positive ones for future sugarcane expansion.

Suggested Citation

  • Ivan Vera & Birka Wicke & Floor van der Hilst, 2020. "Spatial Variation in Environmental Impacts of Sugarcane Expansion in Brazil," Land, MDPI, vol. 9(10), pages 1-20, October.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:397-:d:431980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/10/397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/10/397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filoso, Solange & Carmo, Janaina Braga do & Mardegan, Sílvia Fernanda & Lins, Silvia Rafaela Machado & Gomes, Taciana Figueiredo & Martinelli, Luiz Antonio, 2015. "Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1847-1856.
    2. Alkimim, Akenya & Clarke, Keith C., 2018. "Land use change and the carbon debt for sugarcane ethanol production in Brazil," Land Use Policy, Elsevier, vol. 72(C), pages 65-73.
    3. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    4. Wiedenfeld, Bob, 2008. "Effects of irrigation water salinity and electrostatic water treatment for sugarcane production," Agricultural Water Management, Elsevier, vol. 95(1), pages 85-88, January.
    5. Francisco F. C. Mello & Carlos E. P. Cerri & Christian A. Davies & N. Michele Holbrook & Keith Paustian & Stoécio M. F. Maia & Marcelo V. Galdos & Martial Bernoux & Carlos C. Cerri, 2014. "Payback time for soil carbon and sugar-cane ethanol," Nature Climate Change, Nature, vol. 4(7), pages 605-609, July.
    6. Walter, Arnaldo & Dolzan, Paulo & Quilodrán, Oscar & de Oliveira, Janaína G. & da Silva, Cinthia & Piacente, Fabrício & Segerstedt, Anna, 2011. "Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects," Energy Policy, Elsevier, vol. 39(10), pages 5703-5716, October.
    7. Cristian Youlton & Edson Wendland & Jamil Alexandre Ayach Anache & Carlos Poblete-Echeverría & Seth Dabney, 2016. "Changes in Erosion and Runoff due to Replacement of Pasture Land with Sugarcane Crops," Sustainability, MDPI, vol. 8(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maurício Roberto Cherubin & João Luís Nunes Carvalho & Carlos Eduardo Pellegrino Cerri & Luiz Augusto Horta Nogueira & Glaucia Mendes Souza & Heitor Cantarella, 2021. "Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy," Land, MDPI, vol. 10(1), pages 1-24, January.
    2. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Oscar González-Quiroz & Josabel Belliure & Antonio Gómez-Sal, 2021. "Assessing Land Dynamics and Sustainability on the Pacific Coast of Nicaragua: A Method Based on Comprehensive Land Units," Land, MDPI, vol. 10(5), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurício Roberto Cherubin & João Luís Nunes Carvalho & Carlos Eduardo Pellegrino Cerri & Luiz Augusto Horta Nogueira & Glaucia Mendes Souza & Heitor Cantarella, 2021. "Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy," Land, MDPI, vol. 10(1), pages 1-24, January.
    2. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    3. Alkimim, Akenya & Clarke, Keith C., 2018. "Land use change and the carbon debt for sugarcane ethanol production in Brazil," Land Use Policy, Elsevier, vol. 72(C), pages 65-73.
    4. Gustavo V. Popin & Arthur K. B. Santos & Thiago de P. Oliveira & Plínio B. Camargo & Carlos E. P. Cerri & Marcos Siqueira-Neto, 2020. "Sugarcane straw management for bioenergy: effects of global warming on greenhouse gas emissions and soil carbon storage," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 559-577, April.
    5. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    6. Çağatay, Selim & Taşdoğan, Celal & Özeş, Reyhan, 2017. "Analysing the impact of targeted bio-ethanol blending ratio in Turkey," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(2), September.
    7. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Valdes, Constanza & Hjort, Kim & Seeley, Ralph, 2016. "Brazil’s Agricultural Land Use and Trade: Effects of Changes in Oil Prices and Ethanol Demand," Economic Research Report 242449, United States Department of Agriculture, Economic Research Service.
    9. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    10. Pedro Pérez Medina & María Guadalupe Galindo Mendoza & Gregorio Álvarez Fuentes & Leonardo David Tenorio Martínez & Valter Armando Barrera López, 2023. "Economic Assessment of the Impact of the Sugarcane Industry: An Empirical Approach with Two Focuses for San Luis Potosí, México," J, MDPI, vol. 6(2), pages 1-19, June.
    11. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    12. Lorenzo Di Lucia & Barbara Ribeiro, 2018. "Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    13. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    15. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    16. Machado, Pedro Gerber & Rampazo, Núria A. Miatto & Picoli, Michelle Cristina Araujo & Miranda, Cauã Guilherme & Duft, Daniel Garbellini & de Jesus, Katia Regina Evaristo, 2017. "Analysis of socioeconomic and environmental sensitivity of sugarcane cultivation using a Geographic Information System," Land Use Policy, Elsevier, vol. 69(C), pages 64-74.
    17. Paola Sakai & Stavros Afionis & Nicola Favretto & Lindsay C. Stringer & Caroline Ward & Marco Sakai & Pedro Henrique Weirich Neto & Carlos Hugo Rocha & Jaime Alberti Gomes & Nátali Maidl de Souza & No, 2020. "Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    18. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.
    19. Pedro Gerber Machado & Arnaldo Walter & Michelle Cristina Picoli & Cristina Gerber João, 2017. "Potential impacts on local quality of life due to sugarcane expansion: a case study based on panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 2069-2092, October.
    20. Salles-Filho, Sergio Luiz Monteiro & Castro, Paula Felício Drummond de & Bin, Adriana & Edquist, Charles & Ferro, Ana Flávia Portilho & Corder, Solange, 2017. "Perspectives for the Brazilian bioethanol sector: The innovation driver," Energy Policy, Elsevier, vol. 108(C), pages 70-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:397-:d:431980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.