IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v134y2019ics0301421519305452.html
   My bibliography  Save this article

Exploring future scenarios of ethanol demand in Brazil and their land-use implications

Author

Listed:
  • de Andrade Junior, Milton Aurelio Uba
  • Valin, Hugo
  • Soterroni, Aline C.
  • Ramos, Fernando M.
  • Halog, Anthony

Abstract

Ethanol biofuel demand in Brazil is highly dependent on macroeconomic and policy drivers, making it difficult to anticipate future production and associated environmental implications. Here we develop scenarios of ethanol demand in Brazil towards 2030, based on a thorough examination of key influencing drivers, i.e. GDP and population growth, fleet composition, blending policies, fuel prices and energy efficiency. We then estimate their land-use implications using a detailed partial equilibrium model, GLOBIOM-Brazil. We find that ethanol demand is highly sensitive to the drivers considered and could increase between 37.4 and 70.7 billion litres in 2030 depending on the scenario. Such increase is 13% and 114% above the 2018 production. This represents an expansion in sugarcane area between 1.2 and 5 million hectares (14%–58% above the land-use in 2018). Compared to the low demand scenario, a high demand for ethanol in 2030 would drive sugarcane expansion mostly into pastureland (72%) and natural vegetation mosaics (19%). Our results suggest that future ethanol demand in Brazil should not substantially affect food production nor native forest. This outcome will however depend on the compliance with the sugarcane agro-ecological zoning (AEZ) by the ethanol sector in Brazil, a key assumption of our projections.

Suggested Citation

  • de Andrade Junior, Milton Aurelio Uba & Valin, Hugo & Soterroni, Aline C. & Ramos, Fernando M. & Halog, Anthony, 2019. "Exploring future scenarios of ethanol demand in Brazil and their land-use implications," Energy Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305452
    DOI: 10.1016/j.enpol.2019.110958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    2. Martha, Geraldo B. & Alves, Eliseu & Contini, Elisio, 2012. "Land-saving approaches and beef production growth in Brazil," Agricultural Systems, Elsevier, vol. 110(C), pages 173-177.
    3. Marcos Adami & Bernardo Friedrich Theodor Rudorff & Ramon Morais Freitas & Daniel Alves Aguiar & Luciana Miura Sugawara & Marcio Pupin Mello, 2012. "Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil," Sustainability, MDPI, vol. 4(4), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    2. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    3. Rafael Fernandes Mosquim & Carlos Eduardo Keutenedjian Mady, 2022. "Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet," Energies, MDPI, vol. 15(15), pages 1-22, July.
    4. Marjorie M. Guarenghi & Danilo F. T. Garofalo & Joaquim E. A. Seabra & Marcelo M. R. Moreira & Renan M. L. Novaes & Nilza Patrícia Ramos & Sandra F. Nogueira & Cristiano A. de Andrade, 2023. "Land Use Change Net Removals Associated with Sugarcane in Brazil," Land, MDPI, vol. 12(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnaldo Walter & Marcelo Valadares Galdos & Fabio Vale Scarpare & Manoel Regis Lima Verde Leal & Joaquim Eugênio Abel Seabra & Marcelo Pereira da Cunha & Michelle Cristina Araujo Picoli & Camila Ortol, 2014. "Brazilian sugarcane ethanol: developments so far and challenges for the future," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 70-92, January.
    2. Galdos, Marcelo & Cavalett, Otávio & Seabra, Joaquim E.A. & Nogueira, Luiz Augusto Horta & Bonomi, Antonio, 2013. "Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions," Applied Energy, Elsevier, vol. 104(C), pages 576-582.
    3. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    4. Keles, Derya & Choumert-Nkolo, Johanna & Combes Motel, Pascale & Nazindigouba Kéré, Eric, 2018. "Does the expansion of biofuels encroach on the forest?," Journal of Forest Economics, Elsevier, vol. 33(C), pages 75-82.
    5. Alkimim, Akenya & Clarke, Keith C., 2018. "Land use change and the carbon debt for sugarcane ethanol production in Brazil," Land Use Policy, Elsevier, vol. 72(C), pages 65-73.
    6. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    7. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    8. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    9. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    10. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    11. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    12. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    13. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    14. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    15. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.
    16. Baka, Jennifer & Roland-Holst, David, 2009. "Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round," Energy Policy, Elsevier, vol. 37(7), pages 2505-2513, July.
    17. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2010. "Fossil energy and GHG saving potentials of pig farming in the EU," Energy Policy, Elsevier, vol. 38(5), pages 2561-2571, May.
    18. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    19. Shortall, O.K., 2013. "“Marginal land” for energy crops: Exploring definitions and embedded assumptions," Energy Policy, Elsevier, vol. 62(C), pages 19-27.
    20. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    21. Aruga, Kentaka, 2011. "非遺伝子組換え大豆とエネルギーの価格関係について [Relationships among the Non-Genetically Modified Soybean and Energy Prices]," MPRA Paper 38186, University Library of Munich, Germany, revised 20 Aug 2011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.