IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7215-d408400.html
   My bibliography  Save this article

Biofuels and Their Potential in South Korea

Author

Listed:
  • Gal Hochman

    (Department of Agricultural, Food, & Resource Economics, Cook Campus, Rutgers University, New Brunswick, NJ 08816, USA)

  • Chrysostomos Tabakis

    (KDI School of Public Policy and Management, Sejong-si 30149, Korea)

Abstract

We investigated the biofuel potential of South Korea and the implications of the introduction of biofuels for the Korean fuel market. We approximated the upper-bound biomass potential from forestry residues, livestock manure, and staple crops and calculated the amount of fuel that could be produced using these different biomass feedstocks. Our assessment suggests that biomass can be used to produce a significant portion of the fuel consumed annually in South Korea, with the most promising feedstock being forestry residues. Out of all the technologies considered, the production of cellulosic ethanol from forestry residues could potentially impact the fuel market the most. The key novelty of our study lies in that we considered a broad portfolio of biofuel technologies and carefully examined their potential economic and environmental implications for South Korea given its biomass availability (which we estimated).

Suggested Citation

  • Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7215-:d:408400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gal Hochman & David Zilberman, 2018. "Corn Ethanol and U.S. Biofuel Policy 10 Years Later: A Quantitative Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 570-584.
    2. Gal Hochman & Deepak Rajagopal & David Zilberman, 2011. "The Effect of Biofuels on the International Oil Market," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 402-427.
    3. Lee, Jin-Suk & Lee, Joon-Pyo & Park, Ji-Yeon & Lee, Jung-Hwa & Park, Soon-Chul, 2011. "Status and perspectives on bioenergy in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4884-4890.
    4. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 207-217.
    5. Kafle, Sagar & Parajuli, Ranjan & Bhattarai, Sujala & Euh, Seung Hee & Kim, Dae Hyun, 2017. "A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1123-1130.
    6. Madhu Khanna & David Zilberman (ed.), 2017. "Handbook of Bioenergy Economics and Policy: Volume II," Natural Resource Management and Policy, Springer, number 978-1-4939-6906-7, December.
    7. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    8. Gal Hochman & Deepak Rajagopal & David Zilberman, 2011. "The Effect of Biofuels on the International Oil Market-super- ," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 402-427.
    9. Hochman Gal & Sexton Steven E & Zilberman David D, 2008. "The Economics of Biofuel Policy and Biotechnology," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 6(2), pages 1-24, December.
    10. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    11. Chen, Xiaoguang & Khanna, Madhu, 2012. "Explaining the reductions in US corn ethanol processing costs: Testing competing hypotheses," Energy Policy, Elsevier, vol. 44(C), pages 153-159.
    12. Miguel Carriquiry & Amani Elobeid & Jerome Dumortier & Ryan Goodrich, 2020. "Incorporating Sub‐National Brazilian Agricultural Production and Land‐Use into U.S. Biofuel Policy Evaluation," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(3), pages 497-523, September.
    13. Jung-Yull Shin & Gun-Woo Kim & Janet S. Zepernick & Kyu-Young Kang, 2018. "A Comparative Study on the RFS Program of Korea with the US and UK," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    14. Rajagopal, D. & Plevin, R. & Hochman, G. & Zilberman, D., 2015. "Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards," Energy Economics, Elsevier, vol. 49(C), pages 359-369.
    15. Börjesson Hagberg, Martin & Pettersson, Karin & Ahlgren, Erik O., 2016. "Bioenergy futures in Sweden – Modeling integration scenarios for biofuel production," Energy, Elsevier, vol. 109(C), pages 1026-1039.
    16. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    2. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    4. Gal Hochman & David Zilberman, 2018. "Corn Ethanol and U.S. Biofuel Policy 10 Years Later: A Quantitative Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 570-584.
    5. Antonio M. Bento, Richard Klotz, and Joel R. Landry, 2015. "Are there Carbon Savings from US Biofuel Policies? The Critical Importance of Accounting for Leakage in Land and Fuel Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. Sexton, Steven & Eyer, Jonathan, 2016. "Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas," Energy Policy, Elsevier, vol. 95(C), pages 21-31.
    7. Ram N. Acharya & Rafael Perez-Pena, 2020. "Role of Comparative Advantage in Biofuel Policy Adoption in Latin America," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    8. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2023. "Interactions Between U.S. Vehicle Electrification, Climate Change, and Global Agricultural Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 99-123, January.
    9. Johanna Choumert & Pascale Combes Motel & Charlain Guegang Djimeli, 2017. "The biofuel-development nexus: A meta-analysis," CERDI Working papers halshs-01512678, HAL.
    10. Choumert Nkolo, Johanna & Combes Motel, Pascale & Guegang Djimeli, Charlain, 2018. "Income-generating Effects of Biofuel Policies: A Meta-analysis of the CGE Literature," Ecological Economics, Elsevier, vol. 147(C), pages 230-242.
    11. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    12. Bahel, Eric & Marrouch, Walid & Gaudet, Gérard, 2013. "The economics of oil, biofuel and food commodities," Resource and Energy Economics, Elsevier, vol. 35(4), pages 599-617.
    13. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    14. Dumortier, Jerome & Elobeid, Amani & Carriquiry, Miguel, 2022. "Light-duty vehicle fleet electrification in the United States and its effects on global agricultural markets," Ecological Economics, Elsevier, vol. 200(C).
    15. Dumortier, Jerome & Elobeid, Amani, 2021. "Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change," Land Use Policy, Elsevier, vol. 103(C).
    16. Saraly Andrade de Sá & Charles Palmer & Stefanie Engel, 2012. "Ethanol Production, Food and Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 1-21, January.
    17. Mamadzhanov, Alisher & McCluskey, Jill J. & Li, Tongzhe, 2019. "Willingness to pay for a second-generation bioethanol: A case study of Korea," Energy Policy, Elsevier, vol. 127(C), pages 464-474.
    18. Hakan Eggert & Mads Greaker, 2014. "Promoting Second Generation Biofuels: Does the First Generation Pave the Road?," Energies, MDPI, vol. 7(7), pages 1-16, July.
    19. Klotz, Richard & Bento, Antonio M. & Landry, Joel R., 2013. "Economic Insights Required for Using Lifecycle Analysis for Policy Decisions," 2014 Allied Social Sciences Association (ASSA) Annual Meeting, January 3-5, 2014, Philadelphia, PA 161654, Agricultural and Applied Economics Association.
    20. Sung, Bongsuk, 2019. "Do government subsidies promote firm-level innovation? Evidence from the Korean renewable energy technology industry," Energy Policy, Elsevier, vol. 132(C), pages 1333-1344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7215-:d:408400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.