IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v3y2021i1p2-36d477104.html
   My bibliography  Save this article

Economic and Sustainability of Biodiesel Production—A Systematic Literature Review

Author

Listed:
  • Tamás Mizik

    (Agribusiness Department, Corvinus University of Budapest, Fővám tér 8, 1093 Budapest, Hungary)

  • Gábor Gyarmati

    (Keleti Faculty of Business and Management, Óbuda University, 1084 Budapest, Hungary)

Abstract

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.

Suggested Citation

  • Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.
  • Handle: RePEc:gam:jcltec:v:3:y:2021:i:1:p:2-36:d:477104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/3/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/3/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corral, Serafín & Legna-de la Nuez, David & Romero-Manrique de Lara, David, 2015. "Integrated assessment of biofuel production in arid lands: Jatropha cultivation on the island of Fuerteventura," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 41-53.
    2. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    3. Tamás Mizik, 2020. "Impacts of International Commodity Trade on Conventional Biofuels Production," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    4. Efroymson, Rebecca A. & Pattullo, Molly B. & Mayes, Melanie A. & Mathews, Teresa J. & Mandal, Shovon & Schoenung, Susan, 2020. "Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    6. Castro Gonzáles, Nirza Fabiola, 2016. "International experiences with the cultivation of Jatropha curcas for biodiesel production," Energy, Elsevier, vol. 112(C), pages 1245-1258.
    7. Gaeta-Bernardi, André & Parente, Virginia, 2016. "Organic municipal solid waste (MSW) as feedstock for biodiesel production: A financial feasibility analysis," Renewable Energy, Elsevier, vol. 86(C), pages 1422-1432.
    8. Faurani Santi Singagerda & Tri Yuni Hendrowati & Anuar Sanusi, 2018. "Indonesia Growth of Economics and the Industrialization Biodiesel Based CPO," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 319-334.
    9. Sophie Parsons & Sofia Raikova & Christopher J. Chuck, 2020. "The viability and desirability of replacing palm oil," Nature Sustainability, Nature, vol. 3(6), pages 412-418, June.
    10. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    11. Zaman Sajid & Nicholas Lynch, 2018. "Financial Modelling Strategies for Social Life Cycle Assessment: A Project Appraisal of Biodiesel Production and Sustainability in Newfoundland and Labrador, Canada," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    12. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    13. César, Aldara da Silva & Werderits, Dayana Elizabeth & de Oliveira Saraiva, Gabriela Leal & Guabiroba, Ricardo César da Silva, 2017. "The potential of waste cooking oil as supply for the Brazilian biodiesel chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 246-253.
    14. Rico, J.A.P. & Sauer, I.L., 2015. "A review of Brazilian biodiesel experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 513-529.
    15. Tito Francisco Ianda & Emerson Andrade Sales & Ademar Nogueira Nascimento & Antonio Domingos Padula, 2020. "Optimizing the Cooperated “Multi-Countries” Biodiesel Production and Consumption in Sub-Saharan Africa," Energies, MDPI, vol. 13(18), pages 1-25, September.
    16. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    18. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    19. André Cremonez, Paulo & Feroldi, Michael & Cézar Nadaleti, Willian & de Rossi, Eduardo & Feiden, Armin & de Camargo, Mariele Pasuch & Cremonez, Filipe Eliazar & Klajn, Felipe Fernandes, 2015. "Biodiesel production in Brazil: Current scenario and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 415-428.
    20. Miranda, Amanda Carvalho & da Silva Filho, Silvério Catureba & Tambourgi, Elias Basile & CurveloSantana, José Carlos & Vanalle, Rosangela Maria & Guerhardt, Flávio, 2018. "Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 373-379.
    21. Sun, Jun & Xiong, Xiaoqian & Wang, Mudan & Du, Hua & Li, Jintao & Zhou, Dandan & Zuo, Jian, 2019. "Microalgae biodiesel production in China: A preliminary economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 296-306.
    22. Baral, Nawa Raj & Neupane, Pratikshya & Ale, Bhakta Bahadur & Quiroz-Arita, Carlos & Manandhar, Shishir & Bradley, Thomas H., 2020. "Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Hamurcu & Tamer Eren, 2023. "Multicriteria decision making and goal programming for determination of electric automobile aimed at sustainable green environment: a case study," Environment Systems and Decisions, Springer, vol. 43(2), pages 211-231, June.
    2. Katriina Sirviö & Jonna Kaivosoja & Carolin Nuortila & Huaying Wang-Alho & Seppo Niemi & Teemu Ovaska, 2023. "B20 Fuel Compatibility with Steels in Case of Fuel Contamination," Energies, MDPI, vol. 16(16), pages 1-9, August.
    3. Talal Yusaf & Mohd Kamal Kamarulzaman & Abdullah Adam & Sakinah Hisham & Devarajan Ramasamy & Kumaran Kadirgama & Mahendran Samykano & Sivaraos Subramaniam, 2022. "Physical-Chemical Properties Modification of Hermetia Illucens Larvae Oil and Diesel Fuel for the Internal Combustion Engines Application," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Olga Orynycz & Karol Tucki & Antoni Świć, 2022. "Combustion, Ecological, and Energetic Indicators for Mixtures of Hydrotreated Vegetable Oil (HVO) with Duck Fat Applied as Fuel in a Compression Ignition Engine," Energies, MDPI, vol. 15(21), pages 1-24, October.
    5. K. A. Viraj Miyuranga & Udara S. P. R. Arachchige & Randika A. Jayasinghe & Gamunu Samarakoon, 2022. "Purification of Residual Glycerol from Biodiesel Production as a Value-Added Raw Material for Glycerolysis of Free Fatty Acids in Waste Cooking Oil," Energies, MDPI, vol. 15(23), pages 1-20, November.
    6. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mizik, Tamás & Gyarmati, Gábor, 2022. "A biodízel-termelés gazdasági és fenntarthatósági vizsgálata szakirodalom-elemzéssel [Systematic literature review on the economic dimension and sustainability aspects of biodiesel production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 643-669.
    2. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Dutra, Renato Cabral Dias & Carpio, Lucio Guido Tapia, 2021. "Biodiesel auctions in Brazil: Symmetry of bids and informational paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    5. Szulczyk, Kenneth R. & Badeeb, Ramez Abubakr, 2022. "Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel," Renewable Energy, Elsevier, vol. 192(C), pages 759-768.
    6. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    7. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2020. "Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1339-1351.
    8. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    9. Moreno-Pérez, Olga M. & Marcossi, Gisele P.C. & Ortiz-Miranda, Dionisio, 2017. "Taking stock of the evolution of the biodiesel industry in Brazil: Business concentration and structural traits," Energy Policy, Elsevier, vol. 110(C), pages 525-533.
    10. Guadalupe Pérez & Jorge M. Islas-Samperio, 2021. "Sustainability Evaluation of Non-Toxic Jatropha curcas in Rural Marginal Soil for Obtaining Biodiesel Using Life-Cycle Assessment," Energies, MDPI, vol. 14(10), pages 1-21, May.
    11. Conejero, Marco Antonio & César, Aldara Da Silva & Batista, Angelita Pereira, 2017. "The organizational arrangement of castor bean family farmers promoted by the Brazilian Biodiesel Program: A competitiveness analysis," Energy Policy, Elsevier, vol. 110(C), pages 461-470.
    12. Asarudheen Abdudeen & Mohamed Y. E. Selim & Manigandan Sekar & Mahmoud Elgendi, 2023. "Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review," Energies, MDPI, vol. 16(2), pages 1-28, January.
    13. George Adrian Ifrim & Mariana Titica & Georgiana Horincar & Alina Antache & Laurențiu Baicu & Marian Barbu & José Luis Guzmán, 2022. "Model Based Optimal Control of the Photosynthetic Growth of Microalgae in a Batch Photobioreactor," Energies, MDPI, vol. 15(18), pages 1-15, September.
    14. José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    15. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    17. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    18. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2019. "Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters," Renewable Energy, Elsevier, vol. 130(C), pages 50-60.
    19. López-González, D. & Avalos-Ramirez, A. & Giroir-Fendler, A. & Godbout, S. & Fernandez-Lopez, M. & Sanchez-Silva, L. & Valverde, J.L., 2015. "Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry," Energy, Elsevier, vol. 90(P2), pages 1626-1635.
    20. Zachary Smith & Blesson Isaac & Jaya Shankar Tumuluru & Neal Yancey, 2023. "Grinding and Pelleting Characteristics of Municipal Solid Waste Fractions," Energies, MDPI, vol. 17(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:3:y:2021:i:1:p:2-36:d:477104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.