IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v121y2020ics136403212030006x.html
   My bibliography  Save this article

Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products

Author

Listed:
  • Efroymson, Rebecca A.
  • Pattullo, Molly B.
  • Mayes, Melanie A.
  • Mathews, Teresa J.
  • Mandal, Shovon
  • Schoenung, Susan

Abstract

Pond liners for large-scale cultivation of algae for biofuels and bioproducts are a significant source of capital cost and greenhouse gas emissions, both of which can be reduced by using unlined ponds. Concerns about using unlined ponds to cultivate algae focus on the potential for water and nutrient leakage and biological contamination. We review studies of sustainability and physical and biological sealing of unlined ponds and discuss the potential for use of unlined ponds for algae cultivation for commodity products, such as biofuels. Evidence from animal waste disposal, aquaculture, and algae cultivation shows that soils below ponds can develop self-sealing layers at the soil-water interface, termed bioclogging, which provides a solid basis for technology transfer to algae cultivation. The concept of unlined ponds for algal biofuels and bioproducts is tenable and deserves future research to further define acceptable environments for the use of unlined ponds. Further research is needed to determine the viability and longevity of self-sealing, unlined freshwater and saline algae ponds in various soils; the potential effects of the technology on algal productivity and biological contamination; and performance and economic outcomes from combining self-sealing ponds with limited deployment of liners.

Suggested Citation

  • Efroymson, Rebecca A. & Pattullo, Molly B. & Mayes, Melanie A. & Mathews, Teresa J. & Mandal, Shovon & Schoenung, Susan, 2020. "Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
  • Handle: RePEc:eee:rensus:v:121:y:2020:i:c:s136403212030006x
    DOI: 10.1016/j.rser.2020.109708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212030006X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Benemann, 2013. "Microalgae for Biofuels and Animal Feeds," Energies, MDPI, vol. 6(11), pages 1-18, November.
    2. Pate, Ron & Klise, Geoff & Wu, Ben, 2011. "Resource demand implications for US algae biofuels production scale-up," Applied Energy, Elsevier, vol. 88(10), pages 3377-3388.
    3. Davis, Ryan & Aden, Andy & Pienkos, Philip T., 2011. "Techno-economic analysis of autotrophic microalgae for fuel production," Applied Energy, Elsevier, vol. 88(10), pages 3524-3531.
    4. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    5. Kumar, Kanhaiya & Mishra, Sanjiv K. & Shrivastav, Anupama & Park, Min S. & Yang, Ji-Won, 2015. "Recent trends in the mass cultivation of algae in raceway ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 875-885.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Vorlet, S.L. & De Cesare, G., 2024. "A comprehensive review on geomembrane systems application in hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    2. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    3. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.
    4. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    5. Zhiyong Liu & Chenfeng Liu & Yuyong Hou & Shulin Chen & Dongguang Xiao & Juankun Zhang & Fangjian Chen, 2013. "Isolation and Characterization of a Marine Microalga for Biofuel Production with Astaxanthin as a Co-Product," Energies, MDPI, vol. 6(6), pages 1-14, May.
    6. Zhang, Yanting & Fan, Xiaolei & Yang, Zhiman & Wang, Huanyu & Yang, Dawei & Guo, Rongbo, 2012. "Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis," Applied Energy, Elsevier, vol. 92(C), pages 38-43.
    7. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    8. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    9. Souza, Simone P. & Gopal, Anand R. & Seabra, Joaquim E.A., 2015. "Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery," Energy, Elsevier, vol. 81(C), pages 373-381.
    10. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    11. Colin M. Beal & Robert E. Hebner & Michael E. Webber & Rodney S. Ruoff & A. Frank Seibert & Carey W. King, 2012. "Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results," Energies, MDPI, vol. 5(6), pages 1-39, June.
    12. Canter, Christina E. & Blowers, Paul & Handler, Robert M. & Shonnard, David R., 2015. "Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential alternate nutrient sources," Applied Energy, Elsevier, vol. 143(C), pages 71-80.
    13. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    14. Hognon, Céline & Delrue, Florian & Boissonnet, Guillaume, 2015. "Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models," Energy, Elsevier, vol. 93(P1), pages 31-40.
    15. Andre DuPont, 2013. "Best practices for the sustainable production of algae-based biofuel in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 97-111, January.
    16. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    17. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    19. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    20. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:121:y:2020:i:c:s136403212030006x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.