IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/19636.html
   My bibliography  Save this paper

Unintended Consequences of Transportation Carbon Policies: Land-Use, Emissions, and Innovation

Author

Listed:
  • Stephen P. Holland
  • Jonathan E. Hughes
  • Christopher R. Knittel
  • Nathan C. Parker

Abstract

Renewable fuel standards, low carbon fuel standards, and ethanol subsidies are popular policies to incentivize ethanol production and reduce emissions from transportation. Compared to carbon trading, these policies lead to large shifts in agricultural activity and unexpected social costs. We simulate the 2022 Federal Renewable Fuel Standard (RFS) and find that energy crop production increases by 39 million acres. Land- use costs from erosion and habitat loss are between $277 and $693 million. A low carbon fuel standard (LCFS) and ethanol subsidies have similar effects while costs under an equivalent cap and trade (CAT) system are essentially zero. In addition, the alternatives to CAT magnify errors in assigning emissions rates to fuels and can over or under-incentivize innovation. These results highlight the potential negative efficiency effects of the RFS, LCFS and subsidies, effects that would be less severe under a CAT policy.

Suggested Citation

  • Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2013. "Unintended Consequences of Transportation Carbon Policies: Land-Use, Emissions, and Innovation," NBER Working Papers 19636, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:19636
    Note: EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w19636.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2015. "Some Inconvenient Truths about Climate Change Policy: The Distributional Impacts of Transportation Policies," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1052-1069, December.
    2. Hansen, LeRoy, 2007. "Conservation Reserve Program: Environmental Benefits Update," Agricultural and Resource Economics Review, Cambridge University Press, vol. 36(2), pages 267-280, October.
    3. Ujjayant Chakravorty & Marie‐Hélène Hubert & Michel Moreaux & Linda Nøstbakken, 2017. "Long‐Run Impact of Biofuels on Food Prices," Scandinavian Journal of Economics, Wiley Blackwell, vol. 119(3), pages 733-767, July.
    4. Gallagher, Paul W. & Shapouri, Hosein, 2005. "Usda's 2002 Ethanol Cost-Of-Production Survey," Staff General Research Papers Archive 12307, Iowa State University, Department of Economics.
    5. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    6. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    7. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    8. Harry de Gorter & David R. Just, 2010. "The Social Costs and Benefits of Biofuels: The Intersection of Environmental, Energy and Agricultural Policy," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(1), pages 4-32.
    9. Xiaoguang Chen & Haixiao Huang & Madhu Khanna & Hayri Önal, 2011. "Meeting the Mandate for Biofuels: Implications for Land Use, Food, and Fuel Prices," NBER Chapters, in: The Intended and Unintended Effects of US Agricultural and Biotechnology Policies, pages 223-267, National Bureau of Economic Research, Inc.
    10. Gallagher, Paul W. & Brubaker, Heather & Shapouri, Hosein, 2005. "Plant size: Capital cost relationships in the dry mill ethanol industry," ISU General Staff Papers 200506010700001442, Iowa State University, Department of Economics.
    11. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    12. Gallagher, Paul W. & Brubaker, Heather & Shapouri, Hosein, 2005. "Plant Size: Capital Cost Relationships in the Dry Mill Ethanol Industry," Staff General Research Papers Archive 12306, Iowa State University, Department of Economics.
    13. Roman Keeney & Thomas W. Hertel, 2009. "The Indirect Land Use Impacts of United States Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 895-909.
    14. Montero, Juan-Pablo, 2002. "Permits, Standards, and Technology Innovation," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 23-44, July.
    15. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    16. Shapouri, Hosein & Gallagher, Paul, 2005. "USDA's 2002 Ethanol Cost-of-Production Survey," Agricultural Economic Reports 308482, United States Department of Agriculture, Economic Research Service.
    17. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    18. Madhu Khanna & Amy W. Ando & Farzad Taheripour, 2008. "Welfare Effects and Unintended Consequences of Ethanol Subsidies," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 411-421.
    19. Gardner Bruce, 2007. "Fuel Ethanol Subsidies and Farm Price Support," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-22, December.
    20. Milliman, Scott R. & Prince, Raymond, 1989. "Firm incentives to promote technological change in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 247-265, November.
    21. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    22. Jung, Chulho & Krutilla, Kerry & Boyd, Roy, 1996. "Incentives for Advanced Pollution Abatement Technology at the Industry Level: An Evaluation of Policy Alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 95-111, January.
    23. Lubowski, Ruben N. & Vesterby, Marlow & Bucholtz, Shawn & Baez, Alba & Roberts, Michael J., 2006. "Major Uses of Land in The United States, 2002," Economic Information Bulletin 7203, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    2. Kovács, Olivér, 2017. "Az ipar 4.0 komplexitása - II [The Complexity of Industry 4.0 - Part 2]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 970-987.
    3. Whistance, Jarrett & Thompson, Wyatt & Meyer, Seth, 2017. "Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard," Energy Policy, Elsevier, vol. 101(C), pages 447-455.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    2. JunJie Wu & Christian Langpap, 2015. "The Price and Welfare Effects of Biofuel Mandates and Subsidies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 35-57, September.
    3. Cui, Jingbo, 2012. "Three essays on biofuel, environmental economics, and international trade," ISU General Staff Papers 201201010800003311, Iowa State University, Department of Economics.
    4. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2013. "Can non-market regulations spur innovations in environmental technologies? A study on firm level patenting," Discussion Papers 754, Statistics Norway, Research Department.
    5. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2015. "Some Inconvenient Truths about Climate Change Policy: The Distributional Impacts of Transportation Policies," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1052-1069, December.
    6. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    7. Kocoloski, Matt & Michael Griffin, W. & Scott Matthews, H., 2011. "Impacts of facility size and location decisions on ethanol production cost," Energy Policy, Elsevier, vol. 39(1), pages 47-56, January.
    8. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2018. "Can Direct Regulations Spur Innovations in Environmental Technologies? A Study on Firm‐Level Patenting," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(2), pages 338-371, April.
    9. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    10. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    11. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    12. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    13. Parry, Ian W H & Pizer, William A & Fischer, Carolyn, 2003. "How Large Are the Welfare Gains from Technological Innovation Induced by Environmental Policies?," Journal of Regulatory Economics, Springer, vol. 23(3), pages 237-255, May.
    14. Eva Camacho-Cuena & Till Requate & Israel Waichman, 2012. "Investment Incentives Under Emission Trading: An Experimental Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(2), pages 229-249, October.
    15. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    16. Parry, Ian W.H., 2003. "On the implications of technological innovation for environmental policy," Environment and Development Economics, Cambridge University Press, vol. 8(1), pages 57-76, February.
    17. Basak Bayramoglu & Jean-François Jacques, 2016. "The economic and environmental effects of a biofuel mandate policy: the case of France [Les effets économiques et environnementaux d’une politique d’incorporation obligatoire de biocarburants : le ," Post-Print hal-02877013, HAL.
    18. Alejandro Caparrós & Richard E. Just & David Zilberman, 2015. "Dynamic Relative Standards versus Emission Taxes in a Putty-Clay Model," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 277-308.
    19. Mehdi Fadaee & Luca Lambertini, 2015. "Non-tradeable pollution permits as green R&D incentives," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 27-42, January.
    20. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.

    More about this item

    JEL classification:

    • H4 - Public Economics - - Publicly Provided Goods
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:19636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.