IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v12y2018i3p784-805.html
   My bibliography  Save this article

Assessing R&D efficiency using a two-stage dynamic DEA model: A case study of research institutes in the Chinese Academy of Sciences

Author

Listed:
  • Xiong, Xi
  • Yang, Guo-liang
  • Guan, Zhong-cheng

Abstract

Various studies have been devoted to the evaluation of the research and development (R&D) performances of universities and research institutes. However, existing studies tend to focus on static systems, that is, systems with no intertemporal effect. To tackle this issue, this study attempts to assess relative R&D efficiency of institutes from a dynamic perspective. The unified two-stage model proposed by Kao (2017) made a contribution to combining division efficiencies in the multiplier form with frontier projections in the envelopment form in a unified framework. We develop his model in a dynamic framework into which the effects of carry-over activities are embedded across the period. If the dynamic effects in the efficiency measures are not considered, the results will be biased. This is one of the few studies to examine dynamic effects within the framework of the R&D process. Our analysis is based on samples of 17 research institutes in the Chinese Academy of Sciences over the period of 2012–2015. When compared with the proposed data envelope analysis (DEA) model, results show that the static DEA model may underestimate the R&D efficiency scores. The institutes experienced significant improvements in system efficiency, mainly due to the improvements in transfer efficiency. However, there is still much room for improvement in transferring scientific and technological (S&T) achievements. We also find that the resource scale played an important role in influencing basic research. Finally, the projections of inefficient institutes indicate that most institutes had insufficient carry-over inputs (newly approved projects and management cost) based on the average four-year values, and existing slack resources for managers to improve the future performance.

Suggested Citation

  • Xiong, Xi & Yang, Guo-liang & Guan, Zhong-cheng, 2018. "Assessing R&D efficiency using a two-stage dynamic DEA model: A case study of research institutes in the Chinese Academy of Sciences," Journal of Informetrics, Elsevier, vol. 12(3), pages 784-805.
  • Handle: RePEc:eee:infome:v:12:y:2018:i:3:p:784-805
    DOI: 10.1016/j.joi.2018.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157718300105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2018.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Guo-liang & Rousseau, Ronald & Yang, Li-ying & Liu, Wen-bin, 2014. "A study on directional returns to scale," Journal of Informetrics, Elsevier, vol. 8(3), pages 628-641.
    2. Kao, Chiang, 2017. "Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 261(2), pages 679-689.
    3. Zhang, Daqun & Banker, Rajiv D. & Li, Xiaoxuan & Liu, Wenbin, 2011. "Performance impact of research policy at the Chinese Academy of Sciences," Research Policy, Elsevier, vol. 40(6), pages 875-885, July.
    4. Hirofumi Fukuyama & William Weber, 2015. "Measuring Japanese bank performance: a dynamic network DEA approach," Journal of Productivity Analysis, Springer, vol. 44(3), pages 249-264, December.
    5. Hashimoto, Akihiro & Haneda, Shoko, 2008. "Measuring the change in R&D efficiency of the Japanese pharmaceutical industry," Research Policy, Elsevier, vol. 37(10), pages 1829-1836, December.
    6. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    7. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    8. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    9. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    10. Chapple, Wendy & Lockett, Andy & Siegel, Donald & Wright, Mike, 2005. "Assessing the relative performance of U.K. university technology transfer offices: parametric and non-parametric evidence," Research Policy, Elsevier, vol. 34(3), pages 369-384, April.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    13. Owen-Smith, Jason & Powell, Walter W, 2001. "To Patent or Not: Faculty Decisions and Institutional Success at Technology Transfer," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 99-114, January.
    14. Ouellette, Pierre & Vierstraete, Valerie, 2004. "Technological change and efficiency in the presence of quasi-fixed inputs: A DEA application to the hospital sector," European Journal of Operational Research, Elsevier, vol. 154(3), pages 755-763, May.
    15. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    16. Lee, Boon L. & Worthington, Andrew C., 2016. "A network DEA quantity and quality-orientated production model: An application to Australian university research services," Omega, Elsevier, vol. 60(C), pages 26-33.
    17. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    18. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    19. Fernando Jiménez-Sáez & Jon Mikel Zabala-Iturriagagoitia & Jose Luis Zofío, 2013. "Who leads research productivity growth? Guidelines for R&D policy-makers," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 273-303, January.
    20. Chiang Kao, 2017. "General Two-Stage Systems," International Series in Operations Research & Management Science, in: Network Data Envelopment Analysis, chapter 0, pages 237-273, Springer.
    21. Furman, Jeffrey L. & Porter, Michael E. & Stern, Scott, 2002. "The determinants of national innovative capacity," Research Policy, Elsevier, vol. 31(6), pages 899-933, August.
    22. Tasso Brandt & Torben Schubert, 2013. "Is the university model an organizational necessity? Scale and agglomeration effects in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 541-565, February.
    23. Sueyoshi, Toshiyuki & Goto, Mika & Sugiyama, Manabu, 2013. "DEA window analysis for environmental assessment in a dynamic time shift: Performance assessment of U.S. coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 845-857.
    24. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    25. Joanna Wolszczak-Derlacz & Aleksandra Parteka, 2011. "Efficiency of European public higher education institutions: a two-stage multicountry approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 887-917, December.
    26. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
    27. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    28. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    29. Cook, Wade D. & Zhu, Joe & Bi, Gongbing & Yang, Feng, 2010. "Network DEA: Additive efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1122-1129, December.
    30. Chen, Chien-Ming, 2009. "A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks," European Journal of Operational Research, Elsevier, vol. 194(3), pages 687-699, May.
    31. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    32. Chiu, Yung-ho & Huang, Chin-wei & Ma, Chun-Mei, 2011. "Assessment of China transit and economic efficiencies in a modified value-chains DEA model," European Journal of Operational Research, Elsevier, vol. 209(2), pages 95-103, March.
    33. Abramo, Giovanni & Cicero, Tindaro & D’Angelo, Ciriaco Andrea, 2011. "A field-standardized application of DEA to national-scale research assessment of universities," Journal of Informetrics, Elsevier, vol. 5(4), pages 618-628.
    34. J S Liu & W-M Lu, 2012. "Network-based method for ranking of efficient units in two-stage DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1153-1164, August.
    35. Sengupta, Jati K., 1994. "Measuring dynamic efficiency under risk aversion," European Journal of Operational Research, Elsevier, vol. 74(1), pages 61-69, April.
    36. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    37. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    38. Mei Ho & John Liu & Wen-Min Lu & Chien-Cheng Huang, 2014. "A new perspective to explore the technology transfer efficiencies in US universities," The Journal of Technology Transfer, Springer, vol. 39(2), pages 247-275, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    2. Xiong, Xi & Yang, Guo-liang & Guan, Zhong-cheng, 2020. "Estimating the multi-period efficiency of high-tech research institutes of the Chinese Academy of Sciences: A dynamic slacks-based measure," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    3. Wuzhao Xue & Hua Li & Rizwan Ali & Ramiz ur Rehman & Gonzalo Fernández-Sánchez, 2021. "Assessing the Static and Dynamic Efficiency of Scientific Research of HEIs China: Three Stage DEA–Malmquist Index Approach," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    4. Piaopeng Song & Yuxiao Gu & Bin Su & Arifa Tanveer & Qiao Peng & Weijun Gao & Shaomin Wu & Shihong Zeng, 2023. "The Impact of Green Technology Research and Development (R&D) Investment on Performance: A Case Study of Listed Energy Companies in Beijing, China," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    5. Kun Chen & Xian-tong Ren & Guo-liang Yang & Hai-bo Qin, 2022. "The other side of the coin: The declining of Chinese social science," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 127-143, January.
    6. Wu, Yueh-Cheng & Lin, Sheng-Wei, 2022. "Efficiency evaluation of Asia's cultural tourism using a dynamic DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Huang, Shwu-Huei & Yu, Ming-Miin & Huang, Ya-Ling, 2022. "Evaluation of the efficiency of the local tax administration in Taiwan: Application of a dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    8. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    9. See, Kok Fong & Ma, Zhanxin & Tian, Yuzhen, 2023. "Examining the efficiency of regional university technology transfer in China: A mixed-integer generalized data envelopment analysis framework," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    10. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    11. Shiping Mao & Marios Dominikos Kremantzis & Leonidas Sotirios Kyrgiakos & George Vlontzos, 2022. "R&D Performance Evaluation in the Chinese Food Manufacturing Industry Based on Dynamic DEA in the COVID-19 Era," Agriculture, MDPI, vol. 12(11), pages 1-19, November.
    12. Sangpil Yoon & Gyuhyung Kim & Yanghon Chung & Hosung Son, 2023. "Is customer involvement always beneficial for R&D efficiency? The difference between high‐tech and low‐tech industries," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(3), pages 1678-1688, April.
    13. Xiong, Xi & Yang, Guo-liang & Guan, Zhong-cheng, 2020. "A parallel DEA-based method for evaluating parallel independent subunits with heterogeneous outputs," Journal of Informetrics, Elsevier, vol. 14(3).
    14. Yukun Shi & Duchun Wang & Zimeng Zhang, 2022. "Categorical Evaluation of Scientific Research Efficiency in Chinese Universities: Basic and Applied Research," Sustainability, MDPI, vol. 14(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    3. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    4. Xiong, Xi & Yang, Guo-liang & Guan, Zhong-cheng, 2020. "Estimating the multi-period efficiency of high-tech research institutes of the Chinese Academy of Sciences: A dynamic slacks-based measure," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    5. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2018. "Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model," Journal of Informetrics, Elsevier, vol. 12(1), pages 10-30.
    6. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    7. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    8. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    9. Galagedera, Don U.A. & Watson, John & Premachandra, I.M. & Chen, Yao, 2016. "Modeling leakage in two-stage DEA models: An application to US mutual fund families," Omega, Elsevier, vol. 61(C), pages 62-77.
    10. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    11. Eucabeth Majiwa & Boon L. Lee & Clevo Wilson & Hidemichi Fujii & Shunsuke Managi, 2018. "A network data envelopment analysis (NDEA) model of post-harvest handling: the case of Kenya’s rice processing industry," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(3), pages 631-648, June.
    12. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    13. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    14. Wanke, Peter & Tsionas, Mike G. & Chen, Zhongfei & Moreira Antunes, Jorge Junio, 2020. "Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 456-468.
    15. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    16. Chiu, Yung-ho & Huang, Kuei-Ying & Chang, Tzu-Han & Lin, Tai-Yu, 2021. "Efficiency assessment of coal mine use and land restoration: Considering climate change and income differences," Resources Policy, Elsevier, vol. 73(C).
    17. Mergoni, Anna & Soncin, Mara & Agasisti, Tommaso, 2023. "The effect of ICT on schools’ efficiency: Empirical evidence on 23 European countries," Omega, Elsevier, vol. 119(C).
    18. Liu, Yingnan & Wang, Ke, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis," Energy, Elsevier, vol. 93(P2), pages 1328-1337.
    19. Qingxian An & Fanyong Meng & Sheng Ang & Xiaohong Chen, 2018. "A new approach for fair efficiency decomposition in two-stage structure system," Operational Research, Springer, vol. 18(1), pages 257-272, April.
    20. Huang, Tai-Hsin & Lin, Chung-I & Wu, Ruei-Cian, 2019. "Assessing the marketing and investment efficiency of Taiwan’s life insurance firms under network structures," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 132-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:12:y:2018:i:3:p:784-805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.