IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v39y2014i2p247-275.html
   My bibliography  Save this article

A new perspective to explore the technology transfer efficiencies in US universities

Author

Listed:
  • Mei Ho
  • John Liu
  • Wen-Min Lu
  • Chien-Cheng Huang

Abstract

Universities play a critical role in the complex technology transfer process that facilitates technology transformation from pure research activities to commercialization. The literature has recently focused on whether universities are efficient in this process. With a two-stage perspective, this study explores the required capabilities for universities to be efficient in technology transfer process. To explore the efficiencies in different stages of technology transfer, we apply a 2-stage process DEA method. The model considers 2 inputs, 2 intermediate variables, and 3 output variables from the Association of University Technology Management database. These variables represent funding resource, patenting activities, and licensing and entrepreneurships. Technology transfer in the 2-stage perspective includes the research innovation stage and the value creation stage. The results show that achieving efficiency in the 2 technology-transfer stages requires many different innovation capabilities; thus, most efficient universities only perform efficiently in one of the two stages. When mapping the relative site of universities in the reference network, we found that efficient universities in the research innovation stage are in a more centralized location than those in the value creation stage. By contrast, in the value creation stage, efficient universities can be identified as different reference groups for specific inefficient universities. The network visualization also helps to explain that universities must consider their relative advantages and capabilities to reach efficiency goals in different stages. The comparison between the large-scale group and the small-scale group also showed that a resource scale is critical for universities to accumulate different required capabilities for efficiencies in both stages. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Mei Ho & John Liu & Wen-Min Lu & Chien-Cheng Huang, 2014. "A new perspective to explore the technology transfer efficiencies in US universities," The Journal of Technology Transfer, Springer, vol. 39(2), pages 247-275, April.
  • Handle: RePEc:kap:jtecht:v:39:y:2014:i:2:p:247-275
    DOI: 10.1007/s10961-013-9298-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10961-013-9298-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10961-013-9298-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Friedman, Joseph & Silberman, Jonathan, 2003. "University Technology Transfer: Do Incentives, Management, and Location Matter?," The Journal of Technology Transfer, Springer, vol. 28(1), pages 17-30, January.
    3. Siegel, Donald S. & Waldman, David & Link, Albert, 2003. "Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: an exploratory study," Research Policy, Elsevier, vol. 32(1), pages 27-48, January.
    4. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    5. Kao, Chiang & Hung, Hsi-Tai, 2008. "Efficiency analysis of university departments: An empirical study," Omega, Elsevier, vol. 36(4), pages 653-664, August.
    6. Chapple, Wendy & Lockett, Andy & Siegel, Donald & Wright, Mike, 2005. "Assessing the relative performance of U.K. university technology transfer offices: parametric and non-parametric evidence," Research Policy, Elsevier, vol. 34(3), pages 369-384, April.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Thursby, Jerry G. & Kemp, Sukanya, 2002. "Growth and productive efficiency of university intellectual property licensing," Research Policy, Elsevier, vol. 31(1), pages 109-124, January.
    9. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    10. Liu, John S. & Lu, Wen-Min, 2010. "DEA and ranking with the network-based approach: a case of R&D performance," Omega, Elsevier, vol. 38(6), pages 453-464, December.
    11. W. Cooper & Shanling Li & L. Seiford & Kaoru Tone & R. Thrall & J. Zhu, 2001. "Sensitivity and Stability Analysis in DEA: Some Recent Developments," Journal of Productivity Analysis, Springer, vol. 15(3), pages 217-246, May.
    12. J S Liu & W-M Lu & C Yang & M Chuang, 2009. "A network-based approach for increasing discrimination in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1502-1510, November.
    13. O'Shea, Rory P. & Allen, Thomas J. & Chevalier, Arnaud & Roche, Frank, 2005. "Entrepreneurial orientation, technology transfer and spinoff performance of U.S. universities," Research Policy, Elsevier, vol. 34(7), pages 994-1009, September.
    14. Donald Siegel & Mike Wright & Wendy Chapple & Andy Lockett, 2008. "Assessing The Relative Performance Of University Technology Transfer In The Us And Uk: A Stochastic Distance Function Approach," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 17(7-8), pages 717-729.
    15. Jyoti & D.K. Banwet & S.G. Deshmukh, 2008. "Evaluating performance of national R&D organizations using integrated DEA‐AHP technique," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 57(5), pages 370-388, June.
    16. Phan, Phillip H. & Siegel, Donald S., 2006. "The Effectiveness of University Technology Transfer," Foundations and Trends(R) in Entrepreneurship, now publishers, vol. 2(2), pages 77-144, November.
    17. Mansfield, Edwin & Lee, Jeong-Yeon, 1996. "The modern university: contributor to industrial innovation and recipient of industrial R&D support," Research Policy, Elsevier, vol. 25(7), pages 1047-1058, October.
    18. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    19. Sampat, Bhaven N., 2006. "Patenting and US academic research in the 20th century: The world before and after Bayh-Dole," Research Policy, Elsevier, vol. 35(6), pages 772-789, July.
    20. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    21. David J. Teece, 2008. "Technology Transfer By Multinational Firms: The Resource Cost Of Transferring Technological Know-How," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 1, pages 1-22, World Scientific Publishing Co. Pte. Ltd..
    22. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    23. Padmore, Tim & Gibson, Hervey, 1998. "Modelling systems of innovation: II. A framework for industrial cluster analysis in regions," Research Policy, Elsevier, vol. 26(6), pages 625-641, February.
    24. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2010. "A joint measurement of efficiency and effectiveness for non-storable commodities: Integrated data envelopment analysis approaches," European Journal of Operational Research, Elsevier, vol. 201(2), pages 477-489, March.
    25. Gideon D. Markman & Peter T. Gianiodis & Phillip H. Phan & David B. Balkin, 2004. "Entrepreneurship from the Ivory Tower: Do Incentive Systems Matter?," The Journal of Technology Transfer, Springer, vol. 29(3_4), pages 353-364, August.
    26. Shih-Fen S Chen, 2005. "Extending internalization theory: a new perspective on international technology transfer and its generalization," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 36(2), pages 231-245, March.
    27. Powers, Joshua B. & McDougall, Patricia P., 2005. "University start-up formation and technology licensing with firms that go public: a resource-based view of academic entrepreneurship," Journal of Business Venturing, Elsevier, vol. 20(3), pages 291-311, May.
    28. Donald S. Siegel & Reinhilde Veugelers & Mike Wright, 2007. "Technology transfer offices and commercialization of university intellectual property: performance and policy implications," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 23(4), pages 640-660, Winter.
    29. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    30. Jerry G. Thursby & Marie C. Thursby, 2002. "Who Is Selling the Ivory Tower? Sources of Growth in University Licensing," Management Science, INFORMS, vol. 48(1), pages 90-104, January.
    31. Caldera, Aida & Debande, Olivier, 2010. "Performance of Spanish universities in technology transfer: An empirical analysis," Research Policy, Elsevier, vol. 39(9), pages 1160-1173, November.
    32. Thursby, Jerry G & Jensen, Richard & Thursby, Marie C, 2001. "Objectives, Characteristics and Outcomes of University Licensing: A Survey of Major U.S. Universities," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 59-72, January.
    33. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    34. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    35. Bozeman, Barry, 2000. "Technology transfer and public policy: a review of research and theory," Research Policy, Elsevier, vol. 29(4-5), pages 627-655, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu-Hao Chang, 2018. "A pilot study on the connection between scientific fields and patent classification systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 951-970, March.
    2. Soares, Thiago J. & Torkomian, Ana L.V., 2021. "TTO's staff and technology transfer: Examining the effect of employees' individual capabilities," Technovation, Elsevier, vol. 102(C).
    3. Hyensup Shim & Kiyoon Shin, 2021. "Empirical Analysis of Evidence-Based Policymaking in R&D Programmes," Sustainability, MDPI, vol. 14(1), pages 1-15, December.
    4. Benjamin Yeo, 2019. "What Drives University Technological Innovation Outcomes? A Re-Vitalised Investigation," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-28, September.
    5. Shui‐ying Jin & Xiao‐lin Zhou & Yung‐ho Chiu, 2021. "The parent–subsidiary knowledge transfer efficiency of Chinese–African multinational enterprises based on a metafrontier epsilon‐based measure model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(2), pages 479-492, March.
    6. Wuzhao Xue & Hua Li & Rizwan Ali & Ramiz ur Rehman & Gonzalo Fernández-Sánchez, 2021. "Assessing the Static and Dynamic Efficiency of Scientific Research of HEIs China: Three Stage DEA–Malmquist Index Approach," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    7. Clovia Hamilton & Simon P. Philbin, 2020. "Knowledge Based View of University Tech Transfer—A Systematic Literature Review and Meta-Analysis," Administrative Sciences, MDPI, vol. 10(3), pages 1-28, September.
    8. Xiong, Xi & Yang, Guo-liang & Guan, Zhong-cheng, 2018. "Assessing R&D efficiency using a two-stage dynamic DEA model: A case study of research institutes in the Chinese Academy of Sciences," Journal of Informetrics, Elsevier, vol. 12(3), pages 784-805.
    9. Son, Hosung & Chung, Yanghon & Yoon, Sangpil, 2022. "How can university technology holding companies bridge the Valley of Death? Evidence from Korea," Technovation, Elsevier, vol. 109(C).
    10. H. Pierre Hsieh & Yueh‐Cheng Wu & Wen‐Min Lu & Yao‐Chieh Chen, 2020. "Assessing and ranking the innovation ability and business performance of global companies in the aerospace and defense industry," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(6), pages 952-963, September.
    11. Ma, Ding & Cai, Zhishan & Zhu, Chengkai, 2022. "Technology transfer efficiency of universities in China: A three-stage framework based on the dynamic network slacks-based measurement model," Technology in Society, Elsevier, vol. 70(C).
    12. Alice Bertoletti & Geraint Johnes, 2021. "Efficiency in university-industry collaboration: an analysis of UK higher education institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7679-7714, September.
    13. Fernández-López, Sara & Rodríguez-Gulías, María Jesús & Dios-Vicente, Adrián & Rodeiro-Pazos, David, 2020. "Individual and joint effect of patenting and exporting on the university spin-offs’ survival," Technology in Society, Elsevier, vol. 62(C).
    14. Bai, Xue-Jie & Li, Zhen-Yang & Zeng, Jin, 2020. "Performance evaluation of China's innovation during the industry-university-research collaboration process—an analysis basis on the dynamic network slacks-based measurement model," Technology in Society, Elsevier, vol. 62(C).
    15. Dorys Y. Rodríguez-Castro & Juan Aparicio, 2021. "Introducing a functional framework for integrating the empirical evidence about higher education institutions’ functions and capabilities: A literature review," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 17(1), pages 231-267.
    16. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    17. See, Kok Fong & Ma, Zhanxin & Tian, Yuzhen, 2023. "Examining the efficiency of regional university technology transfer in China: A mixed-integer generalized data envelopment analysis framework," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    18. Laura Calzada-Infante & Sebastián Lozano, 2022. "Computing multiperiod efficiency using dominance networks," Annals of Operations Research, Springer, vol. 309(1), pages 37-57, February.
    19. Lu, Wen-Min & Kweh, Qian Long & Nourani, Mohammad & Huang, Feng-Wen, 2016. "Evaluating the efficiency of dual-use technology development programs from the R&D and socio-economic perspectives," Omega, Elsevier, vol. 62(C), pages 82-92.
    20. Zhang, Shaopeng & Wang, Xiaohong, 2022. "Does innovative city construction improve the industry–university–research knowledge flow in urban China?," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    21. Hsu, David W.L. & Shen, Yung-Chi & Yuan, Benjamin J.C. & Chou, Chiyan James, 2015. "Toward successful commercialization of university technology: Performance drivers of university technology transfer in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 25-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annelore Huyghe & Mirjam Knockaert & Evila Piva & Mike Wright, 2016. "Are researchers deliberately bypassing the technology transfer office? An analysis of TTO awareness," Small Business Economics, Springer, vol. 47(3), pages 589-607, October.
    2. Battaglia, Daniele & Landoni, Paolo & Rizzitelli, Francesco, 2017. "Organizational structures for external growth of University Technology Transfer Offices: An explorative analysis," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 45-56.
    3. Claudia Curi & Cinzia Daraio & Patrick Llerena, 2012. "University technology transfer: how (in)efficient are French universities?," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 36(3), pages 629-654.
    4. Brantnell, Anders & Baraldi, Enrico, 2022. "Understanding the roles and involvement of technology transfer offices in the commercialization of university research," Technovation, Elsevier, vol. 115(C).
    5. Benjamin Yeo, 2019. "What Drives University Technological Innovation Outcomes? A Re-Vitalised Investigation," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-28, September.
    6. Alessandra Micozzi & Donato Iacobucci & Irene Martelli & Andrea Piccaluga, 2021. "Engines need transmission belts: the importance of people in technology transfer offices," The Journal of Technology Transfer, Springer, vol. 46(5), pages 1551-1583, October.
    7. repec:wip:wpaper:4 is not listed on IDEAS
    8. Bozeman, Barry & Rimes, Heather & Youtie, Jan, 2015. "The evolving state-of-the-art in technology transfer research: Revisiting the contingent effectiveness model," Research Policy, Elsevier, vol. 44(1), pages 34-49.
    9. Younhee Kim, 2013. "The ivory tower approach to entrepreneurial linkage: productivity changes in university technology transfer," The Journal of Technology Transfer, Springer, vol. 38(2), pages 180-197, April.
    10. Zhou, Ruoying & Tang, Puay, 2020. "The role of university Knowledge Transfer Offices: Not just commercialize research outputs!," Technovation, Elsevier, vol. 90.
    11. Bradley, Samantha R. & Hayter, Christopher S. & Link, Albert N., 2013. "Models and Methods of University Technology Transfer," UNCG Economics Working Papers 13-10, University of North Carolina at Greensboro, Department of Economics.
    12. Christian Sandström & Karl Wennberg & Martin W. Wallin & Yulia Zherlygina, 2018. "Public policy for academic entrepreneurship initiatives: a review and critical discussion," The Journal of Technology Transfer, Springer, vol. 43(5), pages 1232-1256, October.
    13. Ani Gerbin & Mateja Drnovsek, 2016. "Determinants and public policy implications of academic-industry knowledge transfer in life sciences: a review and a conceptual framework," The Journal of Technology Transfer, Springer, vol. 41(5), pages 979-1076, October.
    14. Federica Rossi, 2014. "The efficiency of universities’ knowledge transfer activities: A multi-output approach beyond patenting and licensing," Working Papers 16, Birkbeck Centre for Innovation Management Research, revised Feb 2014.
    15. Hiroyuki Okamuro & Junichi Nishimura, 2013. "Impact of university intellectual property policy on the performance of university-industry research collaboration," The Journal of Technology Transfer, Springer, vol. 38(3), pages 273-301, June.
    16. Anja Schoen & Bruno Pottelsberghe de la Potterie & Joachim Henkel, 2014. "Governance typology of universities’ technology transfer processes," The Journal of Technology Transfer, Springer, vol. 39(3), pages 435-453, June.
    17. Good, Matthew & Knockaert, Mirjam & Soppe, Birthe & Wright, Mike, 2019. "The technology transfer ecosystem in academia. An organizational design perspective," Technovation, Elsevier, vol. 82, pages 35-50.
    18. Jaepil Han, 2020. "Identifying the effects of technology transfer policy using a quantile regression: the case of South Korea," The Journal of Technology Transfer, Springer, vol. 45(6), pages 1690-1717, December.
    19. Hsu, David W.L. & Shen, Yung-Chi & Yuan, Benjamin J.C. & Chou, Chiyan James, 2015. "Toward successful commercialization of university technology: Performance drivers of university technology transfer in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 25-39.
    20. O’Kane, Conor, 2018. "Technology transfer executives' backwards integration: An examination of interactions between university technology transfer executives and principal investigators," Technovation, Elsevier, vol. 76, pages 64-77.
    21. Pluvia Zuniga, 2011. "The State of Patenting at Research Institutions in Developing Countries: Policy Approaches and Practices," WIPO Economic Research Working Papers 04, World Intellectual Property Organization - Economics and Statistics Division, revised Dec 2011.

    More about this item

    Keywords

    Technology transfer; DEA; Innovation; US university; Network-based method; L24; O31; O32;
    All these keywords.

    JEL classification:

    • L24 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Contracting Out; Joint Ventures
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:39:y:2014:i:2:p:247-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.