IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i3p1170-1176.html
   My bibliography  Save this article

Additive efficiency decomposition in two-stage DEA

Author

Listed:
  • Chen, Yao
  • Cook, Wade D.
  • Li, Ning
  • Zhu, Joe

Abstract

Kao and Hwang (2008) [Kao, C., Hwang, S.-N., 2008. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research 185 (1), 418-429] develop a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stage uses inputs to generate outputs which become the inputs to the second stage. The first stage outputs are referred to as intermediate measures. The second stage then uses these intermediate measures to produce outputs. Kao and Huang represent the efficiency of the overall process as the product of the efficiencies of the two stages. A major limitation of this model is its applicability to only constant returns to scale (CRS) situations. The current paper develops an additive efficiency decomposition approach wherein the overall efficiency is expressed as a (weighted) sum of the efficiencies of the individual stages. This approach can be applied under both CRS and variable returns to scale (VRS) assumptions. The case of Taiwanese non-life insurance companies is revisited using this newly developed approach.

Suggested Citation

  • Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:3:p:1170-1176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00417-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruggiero, John, 1998. "Non-discretionary inputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 111(3), pages 461-469, December.
    2. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    3. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    6. Lindebo, Erik & Hoff, Ayoe & Vestergaard, Niels, 2007. "Revenue-based capacity utilisation measures and decomposition: The case of Danish North Sea trawlers," European Journal of Operational Research, Elsevier, vol. 180(1), pages 215-227, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
    2. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    3. Dimitris K. Despotis & Gregory Koronakos & Dimitris Sotiros, 2016. "Composition versus decomposition in two-stage network DEA: a reverse approach," Journal of Productivity Analysis, Springer, vol. 45(1), pages 71-87, February.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Despotis, Dimitrs & Koronakos, Gregory & Sotiros, Dimitris, 2012. "Additive decomposition in two-stage DEA: An alternative approach," MPRA Paper 41724, University Library of Munich, Germany.
    7. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K., 2019. "Reformulation of Network Data Envelopment Analysis models using a common modelling framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 472-480.
    8. Kao, Chiang & Hwang, Shiuh-Nan, 2011. "Decomposition of technical and scale efficiencies in two-stage production systems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 515-519, June.
    9. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    10. Zhou, Xiaoyang & Luo, Rui & Tu, Yan & Lev, Benjamin & Pedrycz, Witold, 2018. "Data envelopment analysis for bi-level systems with multiple followers," Omega, Elsevier, vol. 77(C), pages 180-188.
    11. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    12. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    13. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    14. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    15. Chiu, Yung-ho & Huang, Chin-wei & Ma, Chun-Mei, 2011. "Assessment of China transit and economic efficiencies in a modified value-chains DEA model," European Journal of Operational Research, Elsevier, vol. 209(2), pages 95-103, March.
    16. Yung-ho Chiu & Chin-wei Huang & Yu-Chuan Chen, 2012. "The R&D value-chain efficiency measurement for high-tech industries in China," Asia Pacific Journal of Management, Springer, vol. 29(4), pages 989-1006, December.
    17. Li, Wanghong & Li, Zhepeng & Liang, Liang & Cook, Wade D., 2017. "Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 77-86.
    18. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    19. Huang, Chin-wei, 2018. "Assessing the performance of tourism supply chains by using the hybrid network data envelopment analysis model," Tourism Management, Elsevier, vol. 65(C), pages 303-316.
    20. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:3:p:1170-1176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.