IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v312y2022ics0306261922001489.html
   My bibliography  Save this article

Energy efficiency evaluation of power supply system: A data-driven approach based on shared resources

Author

Listed:
  • Zhu, Qingyuan
  • Xu, Shuqi
  • Sun, Jiasen
  • Li, Xingchen
  • Zhou, Dequn

Abstract

To relieve the problems of energy shortage and environmental pollution, many countries have implemented a variety of policies to improve the energy efficiency of the power industry. To understand the impacts of such policies on energy efficiency, this paper constructs novel network data envelopment analysis models to recognize the policy-induced structural changes in the power system. Compared with previous studies, the new models project the inefficient points onto a more realistic efficient production frontier, considering how the distribution proportion of shared resources will change when the power system, modeled as a power generation stage and a power sale stage, is led by the latter stage. Our empirical study on China’s power system shows that the province of Guangdong and the eastern region of China perform best, and all power production stages perform better than the corresponding power sale stages. The development of the two power subsystems in the four regions is unbalanced. More than half of the power supply systems choose to allocate more proportion of the shared resources to the sale stage rather than use a more balanced distribution between the two stages.

Suggested Citation

  • Zhu, Qingyuan & Xu, Shuqi & Sun, Jiasen & Li, Xingchen & Zhou, Dequn, 2022. "Energy efficiency evaluation of power supply system: A data-driven approach based on shared resources," Applied Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001489
    DOI: 10.1016/j.apenergy.2022.118683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922001489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Kun-Chin & Purra, Mika M., 2019. "Transforming China's electricity sector: Politics of institutional change and regulation," Energy Policy, Elsevier, vol. 124(C), pages 401-410.
    2. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
    3. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.
    4. Mohsin, Muhammad & Hanif, Imran & Taghizadeh-Hesary, Farhad & Abbas, Qaiser & Iqbal, Wasim, 2021. "Nexus between energy efficiency and electricity reforms: A DEA-Based way forward for clean power development," Energy Policy, Elsevier, vol. 149(C).
    5. Kao, Chiang, 2017. "Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 261(2), pages 679-689.
    6. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    7. Tavassoli, Mohammad & Faramarzi, Gholam Reza & Farzipoor Saen, Reza, 2014. "Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 146-153.
    8. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    9. Fare, R. & Grosskopf, S. & Logan, J., 1985. "The relative performance of publicly-owned and privately-owned electric utilities," Journal of Public Economics, Elsevier, vol. 26(1), pages 89-106, February.
    10. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    11. Zhu, Qingyuan & Li, Xingchen & Li, Feng & Wu, Jie & Zhou, Dequn, 2020. "Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions," Energy Economics, Elsevier, vol. 89(C).
    12. Yao, Xin & Huang, Ruting & Du, Kerui, 2019. "The impacts of market power on power grid efficiency: Evidence from China," China Economic Review, Elsevier, vol. 55(C), pages 99-110.
    13. Chen, Yao & Du, Juan & David Sherman, H. & Zhu, Joe, 2010. "DEA model with shared resources and efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(1), pages 339-349, November.
    14. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    15. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    16. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    17. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    18. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    19. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    20. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    21. Lim, Sungmook & Zhu, Joe, 2019. "Primal-dual correspondence and frontier projections in two-stage network DEA models," Omega, Elsevier, vol. 83(C), pages 236-248.
    22. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    23. Fan, Jing-Li & Zhang, Hao & Zhang, Xian, 2020. "Unified efficiency measurement of coal-fired power plants in China considering group heterogeneity and technological gaps," Energy Economics, Elsevier, vol. 88(C).
    24. Liang Liang & Wade D. Cook & Joe Zhu, 2008. "DEA models for two‐stage processes: Game approach and efficiency decomposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 643-653, October.
    25. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    26. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    27. Chiang Kao, 2017. "General Two-Stage Systems," International Series in Operations Research & Management Science, in: Network Data Envelopment Analysis, chapter 0, pages 237-273, Springer.
    28. Jie Wu & Beibei Xiong & Qingxian An & Jiasen Sun & Huaqing Wu, 2017. "Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs," Annals of Operations Research, Springer, vol. 255(1), pages 257-276, August.
    29. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    30. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    31. Chen, Zhenling & Li, Jinkai & Zhao, Weigang & Yuan, Xiao-Chen & Yang, Guo-liang, 2019. "Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China," Energy Policy, Elsevier, vol. 125(C), pages 122-134.
    32. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    2. Marek Stawowy & Adam Rosiński & Jacek Paś & Stanisław Duer & Marta Harničárová & Krzysztof Perlicki, 2023. "The Reliability and Exploitation Analysis Method of the ICT System Power Supply with the Use of Modelling Based on Rough Sets," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Oleg Gubarevych & Stanisław Duer & Inna Melkonova & Marek Woźniak & Jacek Paś & Marek Stawowy & Krzysztof Rokosz & Konrad Zajkowski & Dariusz Bernatowicz, 2023. "Research on and Assessment of the Reliability of Railway Transport Systems with Induction Motors," Energies, MDPI, vol. 16(19), pages 1-21, September.
    4. Wu, Liangpeng & Xu, Chengzhen & Zhu, Qingyuan & Zhou, Dequn, 2024. "Multiple energy price distortions and improvement of potential energy consumption structure in the energy transition," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    2. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    3. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    4. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    5. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    6. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.
    7. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    8. Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
    9. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    10. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    11. Wu, Jie & Xu, Guangcheng & Zhu, Qingyuan & Zhang, Chaochao, 2021. "Two-stage DEA models with fairness concern: Modelling and computational aspects," Omega, Elsevier, vol. 105(C).
    12. Wade D. Cook & Chuanyin Guo & Wanghong Li & Zhepeng Li & Liang Liang & Joe Zhu, 2017. "Efficiency Measurement of Multistage Processes: Context Dependent Numbers of Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-18, December.
    13. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    14. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    15. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    16. Feihua Huang & Yue Du & Debao Hu & Bin Zhang, 2021. "Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    17. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    18. Xiaohong Liu & Feng Yang & Jie Wu, 2020. "DEA considering technological heterogeneity and intermediate output target setting: the performance analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 291(1), pages 605-626, August.
    19. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    20. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.