IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v55y2023ipas1544612323002878.html
   My bibliography  Save this article

Predicting natural gas futures’ volatility using climate risks

Author

Listed:
  • Guo, Kun
  • Liu, Fengqi
  • Sun, Xiaolei
  • Zhang, Dayong
  • Ji, Qiang

Abstract

In this paper, we examine the tracking and predictive power of two kinds of climate risks—namely, climate policy uncertainty (CPU) and climate-related disasters—on the price volatility of natural gas futures. The GARCH-MIDAS model was adopted to incorporate daily natural gas futures prices with monthly CPU indices and disaster frequencies. The empirical results showed a robust predictive relationship between disaster frequency and natural gas price volatility under both in-sample and out-of-sample scenarios, while combining the CPU index with other predictors could not improve the out-of-sample forecasting performance. We believe these findings could provide insights for traders and market regulators.

Suggested Citation

  • Guo, Kun & Liu, Fengqi & Sun, Xiaolei & Zhang, Dayong & Ji, Qiang, 2023. "Predicting natural gas futures’ volatility using climate risks," Finance Research Letters, Elsevier, vol. 55(PA).
  • Handle: RePEc:eee:finlet:v:55:y:2023:i:pa:s1544612323002878
    DOI: 10.1016/j.frl.2023.103915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323002878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.103915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022. "Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model," Energy Economics, Elsevier, vol. 108(C).
    2. Nobuyuki Utsumi & Hyungjun Kim, 2022. "Observed influence of anthropogenic climate change on tropical cyclone heavy rainfall," Nature Climate Change, Nature, vol. 12(5), pages 436-440, May.
    3. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    4. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    5. Xiaoling Yu & Yirong Huang & Kaitian Xiao, 2021. "Global economic policy uncertainty and stock volatility: evidence from emerging economies," Journal of Applied Economics, Taylor & Francis Journals, vol. 24(1), pages 416-440, January.
    6. Allie Goldstein & Will R. Turner & Jillian Gladstone & David G. Hole, 2019. "The private sector’s climate change risk and adaptation blind spots," Nature Climate Change, Nature, vol. 9(1), pages 18-25, January.
    7. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2018. "Climate Change, Financial Stability and Monetary Policy," Ecological Economics, Elsevier, vol. 152(C), pages 219-234.
    8. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    9. Guo, Jiaqi & Long, Shaobo & Luo, Weijie, 2022. "Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas," International Review of Financial Analysis, Elsevier, vol. 83(C).
    10. Sourangsu Chowdhury & Sagnik Dey & Kirk R. Smith, 2018. "Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    11. O-Chia Chuang & Chenxu Yang, 2022. "Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model," Energies, MDPI, vol. 15(8), pages 1-14, April.
    12. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    13. Chen, Yajie & Guo, Kun & Ji, Qiang & Zhang, Dayong, 2023. "“Not all climate risks are alike”: Heterogeneous responses of financial firms to natural disasters in China," Finance Research Letters, Elsevier, vol. 52(C).
    14. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    15. Arthur A. Benthem & Edmund Crooks & Stefano Giglio & Eugenie Schwob & Johannes Stroebel, 2022. "The effect of climate risks on the interactions between financial markets and energy companies," Nature Energy, Nature, vol. 7(8), pages 690-697, August.
    16. Paul Griffin & Amy Myers Jaffe, 2022. "Challenges for a climate risk disclosure mandate," Nature Energy, Nature, vol. 7(1), pages 2-4, January.
    17. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    18. Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Resources Policy, Elsevier, vol. 78(C).
    19. Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
    20. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    21. Luo, Xin & Tao, Yunqing & Zou, Kai, 2022. "A new measure of realized volatility: Inertial and reverse realized semivariance," Finance Research Letters, Elsevier, vol. 47(PA).
    22. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    23. Yusuke Satoh & Kei Yoshimura & Yadu Pokhrel & Hyungjun Kim & Hideo Shiogama & Tokuta Yokohata & Naota Hanasaki & Yoshihide Wada & Peter Burek & Edward Byers & Hannes Müller Schmied & Dieter Gerten & S, 2022. "The timing of unprecedented hydrological drought under climate change," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    24. Liu, Guangqiang & Zeng, Qing & Lei, Juan, 2022. "Dynamic risks from climate policy uncertainty: A case study for the natural gas market," Resources Policy, Elsevier, vol. 79(C).
    25. Raza, Syed Ali & Khan, Komal Akram & Guesmi, Khaled & Benkraiem, Ramzi, 2023. "Uncertainty in the financial regulation policy and the boom of cryptocurrencies," Finance Research Letters, Elsevier, vol. 52(C).
    26. Lang, Qiaoqi & Lu, Xinjie & Ma, Feng & Huang, Dengshi, 2022. "Oil futures volatility predictability: Evidence based on Twitter-based uncertainty," Finance Research Letters, Elsevier, vol. 47(PA).
    27. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    28. Zhao, Jing, 2022. "Exploring the influence of the main factors on the crude oil price volatility: An analysis based on GARCH-MIDAS model with Lasso approach," Resources Policy, Elsevier, vol. 79(C).
    29. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    30. Ding, Hao & Ji, Qiang & Ma, Rufei & Zhai, Pengxiang, 2022. "High-carbon screening out: A DCC-MIDAS-climate policy risk method," Finance Research Letters, Elsevier, vol. 47(PA).
    31. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    32. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    33. Xie, Haipeng & Sun, Xiaotian & Fu, Wei & Chen, Chen & Bie, Zhaohong, 2023. "Risk management for integrated power and natural gas systems against extreme weather: A coalitional insurance contract approach," Energy, Elsevier, vol. 263(PB).
    34. Yu, Xiaoling & Huang, Yirong, 2021. "The impact of economic policy uncertainty on stock volatility: Evidence from GARCH–MIDAS approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    35. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    36. Andrew Speake & Paul Donohoo-Vallett & Eric Wilson & Emily Chen & Craig Christensen, 2020. "Residential Natural Gas Demand Response Potential during Extreme Cold Events in Electricity-Gas Coupled Energy Systems," Energies, MDPI, vol. 13(19), pages 1-19, October.
    37. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    38. Ana Cruz & Elisabeth Krausmann, 2013. "Vulnerability of the oil and gas sector to climate change and extreme weather events," Climatic Change, Springer, vol. 121(1), pages 41-53, November.
    39. Ren, Xiaohang & Li, Jingyao & He, Feng & Lucey, Brian, 2023. "Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    40. Donglan Liu & Xin Liu & Kun Guo & Qiang Ji & Yingxian Chang, 2023. "Spillover Effects among Electricity Prices, Traditional Energy Prices and Carbon Market under Climate Risk," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shengming & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "The Russia–Ukraine war and energy market volatility: A novel application of the volatility ratio in the context of natural gas," Resources Policy, Elsevier, vol. 85(PA).
    2. Jaeseok Yun & Sungyeon Kim & Jinmin Kim, 2024. "Digital Twin Technology in the Gas Industry: A Comparative Simulation Study," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    3. Kuang, Hewu & Liang, Yiyan & Zhao, Wenjia & Cai, Jiahong, 2023. "Impact of natural resources and technology on economic development and sustainable environment – Analysis of resources-energy-growth-environment linkages in BRICS," Resources Policy, Elsevier, vol. 85(PB).
    4. Zhang, Jiaming & Xiang, Yitian & Zou, Yang & Guo, Songlin, 2024. "Volatility forecasting of Chinese energy market: Which uncertainty have better performance?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    5. Cheng, Zishu & Li, Mingchen & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Climate change and crude oil prices: An interval forecast model with interval-valued textual data," Energy Economics, Elsevier, vol. 134(C).
    6. Lu, Xunfa & He, Pengchao & Zhang, Zhengjun & Apergis, Nicholas & Roubaud, David, 2024. "Extreme co-movements between decomposed oil price shocks and sustainable investments," Energy Economics, Elsevier, vol. 134(C).
    7. Liu, Changyu & Wang, Jing & Ji, Qiang & Zhang, Dayong, 2024. "To be green or not to be: How governmental regulation shapes financial institutions' greenwashing behaviors in green finance," International Review of Financial Analysis, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    2. Liu, Tao & Guan, Xinyue & Wei, Yigang & Xue, Shan & Xu, Liang, 2023. "Impact of economic policy uncertainty on the volatility of China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 121(C).
    3. Shen, Yiran & Sun, Xiaolei & Ji, Qiang & Zhang, Dayong, 2023. "Climate events matter in the global natural gas market," Energy Economics, Elsevier, vol. 125(C).
    4. Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
    5. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    6. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    7. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    8. Li, Dongxin & Zhang, Li & Li, Lihong, 2023. "Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model," International Review of Financial Analysis, Elsevier, vol. 88(C).
    9. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    10. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    11. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    12. Bjoern Schulte-Tillman & Mawuli Segnon & Bernd Wilfling, 2022. "Financial-market volatility prediction with multiplicative Markov-switching MIDAS components," CQE Working Papers 9922, Center for Quantitative Economics (CQE), University of Muenster.
    13. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).
    14. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    15. Zhang, Li & Liang, Chao & Huynh, Luu Duc Toan & Wang, Lu & Damette, Olivier, 2024. "Measuring the impact of climate risk on renewable energy stock volatility: A case study of G20 economies," Journal of Economic Behavior & Organization, Elsevier, vol. 223(C), pages 168-184.
    16. Naimoli, Antonio, 2023. "The information content of sentiment indices in forecasting Value at Risk and Expected Shortfall: a Complete Realized Exponential GARCH-X approach," International Economics, Elsevier, vol. 176(C).
    17. Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024. "Doubly multiplicative error models with long- and short-run components," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    18. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
    19. Siddique, Md. Abubakar & Nobanee, Haitham & Hasan, Md. Bokhtiar & Uddin, Gazi Salah & Hossain, Md. Naiem & Park, Donghyun, 2023. "How do energy markets react to climate policy uncertainty? Fossil vs. renewable and low-carbon energy assets," Energy Economics, Elsevier, vol. 128(C).
    20. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:55:y:2023:i:pa:s1544612323002878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.