IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124023206.html
   My bibliography  Save this article

Modelling the volatility dynamics of China's regional carbon markets: The heterogeneous effects of the fossil and clean energy electricity generation

Author

Listed:
  • Lu, Xunfa
  • Wang, Huiyou
  • Mo, Jianlei

Abstract

This paper models the volatility dynamics of China's regional carbon markets and examines the impact of the electricity structure on China's regional carbon markets based on the Auto-Regressive and Moving Average-Generalized Autoregressive Conditional Heteroscedasticity with Mixed Data Sampling (ARMA-GARCH-MIDAS) model. Particularly, how the electricity structure affects carbon market volatility is investigated using total electricity generation and decomposed electricity generation as low-frequency variables in the model, respectively. Subsequently, the varying responses of volatilities in China's three emission trading scheme pilots to both total and decomposed electricity generation are empirically analyzed. The results reveal significant and negative impacts of thermal and renewable electricity generation growth on China's carbon market volatility, with the most pronounced effect observed in Guangdong, followed by Hubei and Shenzhen; however, the impact of renewable electricity generation seems to be relatively weak. Additionally, heterogeneous effects of the decomposed electricity generation on market-specific volatilities are unveiled, with certain components exhibiting positive, negative, or no effects. Finally, the introduction of the electricity structure variable can enhance the accuracy of estimating carbon allowance price volatility, and avoid a potential biased measure of volatility.

Suggested Citation

  • Lu, Xunfa & Wang, Huiyou & Mo, Jianlei, 2025. "Modelling the volatility dynamics of China's regional carbon markets: The heterogeneous effects of the fossil and clean energy electricity generation," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124023206
    DOI: 10.1016/j.renene.2024.122252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022. "Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model," Energy Economics, Elsevier, vol. 108(C).
    2. Zhang-Hangjian Chen & Xiang Gao & Apicha Insuwan, 2023. "Dynamic information spillover between Chinese carbon and stock markets under extreme weather shocks," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    3. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    4. Samuel Fankhauser & Cameron Hepburn & Jisung Park, 2010. "Combining Multiple Climate Policy Instruments: How Not To Do It," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 209-225.
    5. Koch, Nicolas & Fuss, Sabine & Grosjean, Godefroy & Edenhofer, Ottmar, 2014. "Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence," Energy Policy, Elsevier, vol. 73(C), pages 676-685.
    6. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    7. Jilin Zhang & Yukun Xu, 2020. "Research on the Price Fluctuation and Risk Formation Mechanism of Carbon Emission Rights in China Based on a GARCH Model," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    8. Yuling Wang & Yunshuang Xiang & Xinyu Lei & Yucheng Zhou, 2022. "Volatility analysis based on GARCH-type models: Evidence from the Chinese stock market," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 2530-2554, December.
    9. Lu, Xunfa & He, Pengchao & Zhang, Zhengjun & Apergis, Nicholas & Roubaud, David, 2024. "Extreme co-movements between decomposed oil price shocks and sustainable investments," Energy Economics, Elsevier, vol. 134(C).
    10. Rickels Wilfried & Görlich Dennis & Peterson Sonja, 2015. "Explaining European Emission Allowance Price Dynamics: Evidence from Phase II," German Economic Review, De Gruyter, vol. 16(2), pages 181-202, May.
    11. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    12. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    13. Bianca Nogrady, 2021. "China launches world’s largest carbon market: but is it ambitious enough?," Nature, Nature, vol. 595(7869), pages 637-637, July.
    14. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    15. Liu, Yang & Zhuo, Xuru & Zhou, Xiaozhu, 2024. "Multifractal analysis of Chinese literary and web novels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    16. Yu, Xiaoling & Huang, Yirong, 2021. "The impact of economic policy uncertainty on stock volatility: Evidence from GARCH–MIDAS approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    17. Shaolong Zeng & Qinyi Fu & Danni Yang & Yihua Tian & Yang Yu, 2023. "The Influencing Factors of the Carbon Trading Price: A Case of China against a “Double Carbon” Background," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    18. Lin, Boqiang & Wu, Nan, 2022. "Will the China's carbon emissions market increase the risk-taking of its enterprises?," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 413-434.
    19. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Vo, Xuan Vinh, 2022. "Oil shocks and volatility of green investments: GARCH-MIDAS analyses," Resources Policy, Elsevier, vol. 78(C).
    20. Liu, Tao & Guan, Xinyue & Wei, Yigang & Xue, Shan & Xu, Liang, 2023. "Impact of economic policy uncertainty on the volatility of China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 121(C).
    21. Sun, Limei & Xiang, Meiqi & Shen, Qing, 2020. "A comparative study on the volatility of EU and China’s carbon emission permits trading markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    22. Wang, Yudong & Liu, Li & Gu, Rongbao & Cao, Jianjun & Wang, Haiyan, 2010. "Analysis of market efficiency for the Shanghai stock market over time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1635-1642.
    23. Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    24. Wen, Fenghua & Wu, Nan & Gong, Xu, 2020. "China's carbon emissions trading and stock returns," Energy Economics, Elsevier, vol. 86(C).
    25. Zhou, Kaile & Li, Yiwen, 2019. "Influencing factors and fluctuation characteristics of China’s carbon emission trading price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 459-474.
    26. Zhang, Li & Wang, Lu & Peng, Lijuan & Luo, Keyu, 2023. "Measuring the response of clean energy stock price volatility to extreme shocks," Renewable Energy, Elsevier, vol. 206(C), pages 1289-1300.
    27. Lu, Xunfa & Huang, Nan & Mo, Jianlei, 2024. "Time-varying causalities from the COVID-19 media coverage to the dynamic spillovers among the cryptocurrency, the clean energy, and the crude oil," Energy Economics, Elsevier, vol. 132(C).
    28. Yidan Chen & Yuwei Sun & Can Wang, 2018. "Influencing Factors of Companies’ Behavior for Mitigation: A Discussion within the Context of Emission Trading Scheme," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    29. Fan, John Hua & Todorova, Neda, 2017. "Dynamics of China’s carbon prices in the pilot trading phase," Applied Energy, Elsevier, vol. 208(C), pages 1452-1467.
    30. Peng Yang & Haiyan Song & Long Wen & Han Liu, 2024. "Modeling and forecasting listed tourism firms’ risk in China using a trend asymmetric GARCH-MIDAS model," Tourism Economics, , vol. 30(6), pages 1404-1422, September.
    31. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
    32. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    33. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    34. Fan, Xinghua & Lv, Xiangxiang & Yin, Jiuli & Tian, Lixin & Liang, Jiaochen, 2019. "Multifractality and market efficiency of carbon emission trading market: Analysis using the multifractal detrended fluctuation technique," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    35. Dai, Peng-Fei & Xiong, Xiong & Duc Huynh, Toan Luu & Wang, Jiqiang, 2022. "The impact of economic policy uncertainties on the volatility of European carbon market," Journal of Commodity Markets, Elsevier, vol. 26(C).
    36. Yinpeng Zhang & Zhixin Liu & Yingying Xu, 2018. "Carbon price volatility: The case of China," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    37. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    38. Lin, Jiang & Kahrl, Fredrich & Yuan, Jiahai & Chen, Qixin & Liu, Xu, 2019. "Economic and carbon emission impacts of electricity market transition in China: A case study of Guangdong Province," Applied Energy, Elsevier, vol. 238(C), pages 1093-1107.
    39. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tao & Guan, Xinyue & Wei, Yigang & Xue, Shan & Xu, Liang, 2023. "Impact of economic policy uncertainty on the volatility of China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 121(C).
    2. Xinyu Wu & Xuebao Yin & Xueting Mei, 2022. "Forecasting the Volatility of European Union Allowance Futures with Climate Policy Uncertainty Using the EGARCH-MIDAS Model," Sustainability, MDPI, vol. 14(7), pages 1-13, April.
    3. Guo, Kun & Liu, Fengqi & Sun, Xiaolei & Zhang, Dayong & Ji, Qiang, 2023. "Predicting natural gas futures’ volatility using climate risks," Finance Research Letters, Elsevier, vol. 55(PA).
    4. Yao, Yinhong & Chen, Xiuwen & Chen, Zhensong, 2025. "Portfolio tail risk forecasting for international financial assets: A GARCH-MIDAS-R-Vine copula model," The North American Journal of Economics and Finance, Elsevier, vol. 77(C).
    5. Yaqi Wu & Chen Zhang & Po Yun & Dandan Zhu & Wei Cao & Zulfiqar Ali Wagan, 2021. "Time–frequency analysis of the interaction mechanism between European carbon and crude oil markets," Energy & Environment, , vol. 32(7), pages 1331-1357, November.
    6. Zhao, Jing, 2022. "Exploring the influence of the main factors on the crude oil price volatility: An analysis based on GARCH-MIDAS model with Lasso approach," Resources Policy, Elsevier, vol. 79(C).
    7. Huawei Niu & Tianyu Liu, 2024. "Forecasting the volatility of European Union allowance futures with macroeconomic variables using the GJR-GARCH-MIDAS model," Empirical Economics, Springer, vol. 67(1), pages 75-96, July.
    8. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    9. Wang, Lu & Wang, Xing & Liang, Chao, 2024. "Natural gas volatility prediction via a novel combination of GARCH-MIDAS and one-class SVM," The Quarterly Review of Economics and Finance, Elsevier, vol. 98(C).
    10. Hengzhen Lu & Qiujin Gao & Ling Xiao & Gurjeet Dhesi, 2024. "Forecasting EUA futures volatility with geopolitical risk: evidence from GARCH-MIDAS models," Review of Managerial Science, Springer, vol. 18(7), pages 1917-1943, July.
    11. Xiangjun Chen & Bo Yan, 2024. "Research on jumps and volatility in China’s carbon market," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-43, February.
    12. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).
    13. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    14. Xu, Yingying & Dai, Yifan & Guo, Lingling & Chen, Jingjing, 2024. "Leveraging machine learning to forecast carbon returns: Factors from energy markets," Applied Energy, Elsevier, vol. 357(C).
    15. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    16. Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
    17. Wang, Jiqian & Guo, Xiaozhu & Tan, Xueping & Chevallier, Julien & Ma, Feng, 2023. "Which exogenous driver is informative in forecasting European carbon volatility: Bond, commodity, stock or uncertainty?," Energy Economics, Elsevier, vol. 117(C).
    18. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    19. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    20. Yi Yao & Lixin Tian & Guangxi Cao, 2022. "The Information Spillover among the Carbon Market, Energy Market, and Stock Market: A Case Study of China’s Pilot Carbon Markets," Sustainability, MDPI, vol. 14(8), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124023206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.