IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v7y2021i1d10.1186_s40854-021-00292-8.html
   My bibliography  Save this article

Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model

Author

Listed:
  • Jian Liu

    (Changsha University of Science and Technology)

  • Ziting Zhang

    (Changsha University of Science and Technology)

  • Lizhao Yan

    (Hunan Normal University)

  • Fenghua Wen

    (Central South Univerdity)

Abstract

This study investigates the impact of economic policy uncertainty (EPU) on the volatility of European Union (EU) carbon futures prices and whether it has predictive power for the volatility of carbon futures prices. The GARCH-MIDAS model is applied for evaluating the impact of different EPU indexes on the price volatility of European Union Allowance (EUA) futures. We then compare the predictive power for the volatility of the two GARCH-MIDAS models based on different EPU indexes and six GARCH-type models. Our empirical results show that the GARCH-MIDAS models, which exhibit superior out-of-sample predictive ability, outperform GARCH-type models. The results also indicate that EPU has noticeable effect on the volatility of EUA futures. Specifically, the forecast accuracy of the EU EPU index is significantly higher than that of the global EPU index. Robustness checks further confirm that the EPU index (especially the EPU index of the EU) has strong predictive power for EUA futures prices. Additionally, using the volatility forecasting methods that GARCH-MIDAS models combine with the EPU index, investors can construct their portfolios to realize economic returns.

Suggested Citation

  • Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
  • Handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00292-8
    DOI: 10.1186/s40854-021-00292-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-021-00292-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-021-00292-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohsen Bahmani-Oskooee & Sujata Saha, 2019. "On the effects of policy uncertainty on stock prices," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 43(4), pages 764-778, October.
    2. Chen, Xian & Li, Yang & Xiao, Jihong & Wen, Fenghua, 2020. "Oil shocks, competition, and corporate investment: Evidence from China," Energy Economics, Elsevier, vol. 89(C).
    3. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    4. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    5. Wang, Yizhong & Chen, Carl R. & Huang, Ying Sophie, 2014. "Economic policy uncertainty and corporate investment: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 227-243.
    6. Bangzhu Zhu & Julien Chevallier, 2017. "Pricing and Forecasting Carbon Markets," Springer Books, Springer, number 978-3-319-57618-3, June.
    7. Fang, Libing & Yu, Honghai & Li, Lei, 2017. "The effect of economic policy uncertainty on the long-term correlation between U.S. stock and bond markets," Economic Modelling, Elsevier, vol. 66(C), pages 139-145.
    8. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    9. Gary Koop & Lise Tole, 2013. "Forecasting the European carbon market," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
    10. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    11. Kang, Boda & Nikitopoulos, Christina Sklibosios & Prokopczuk, Marcel, 2020. "Economic determinants of oil futures volatility: A term structure perspective," Energy Economics, Elsevier, vol. 88(C).
    12. Muhammad Kamran Khan & Muhammad Imran Khan & Muhammad Rehan, 2020. "The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-13, December.
    13. Yu Li & Feng Ma & Yaojie Zhang & Zuoping Xiao, 2019. "Economic policy uncertainty and the Chinese stock market volatility: new evidence," Applied Economics, Taylor & Francis Journals, vol. 51(49), pages 5398-5410, October.
    14. Yu, Honghai & Fang, Libing & Sun, Wencong, 2018. "Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 931-940.
    15. Faris Nasif Alshubiri & Omar Ikbal Tawfik & Syed Ahsan Jamil, 2020. "Impact of petroleum and non-petroleum indices on financial development in Oman," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    16. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    17. Christian Conrad & Melanie Schienle, 2020. "Testing for an Omitted Multiplicative Long-Term Component in GARCH Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 229-242, April.
    18. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    19. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    20. Gang Kou & Özlem Olgu Akdeniz & Hasan Dinçer & Serhat Yüksel, 2021. "Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-28, December.
    21. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    22. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    23. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    24. Steven J. Davis, 2016. "An Index of Global Economic Policy Uncertainty," NBER Working Papers 22740, National Bureau of Economic Research, Inc.
    25. Yu, Miao & Song, Jinguo, 2018. "Volatility forecasting: Global economic policy uncertainty and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 316-323.
    26. Madhavi Latha Challa & Venkataramanaiah Malepati & Siva Nageswara Rao Kolusu, 2018. "Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-17, December.
    27. Bel, Germà & Joseph, Stephan, 2015. "Emission abatement: Untangling the impacts of the EU ETS and the economic crisis," Energy Economics, Elsevier, vol. 49(C), pages 531-539.
    28. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    29. Liu, Jian & Cheng, Cheng & Yang, Xianglin & Yan, Lizhao & Lai, Yongzeng, 2019. "Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    30. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    31. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    32. Balcilar, Mehmet & Gupta, Rangan & Kim, Won Joong & Kyei, Clement, 2019. "The role of economic policy uncertainties in predicting stock returns and their volatility for Hong Kong, Malaysia and South Korea," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 150-163.
    33. Fan, Ying & Jia, Jun-Jun & Wang, Xin & Xu, Jin-Hua, 2017. "What policy adjustments in the EU ETS truly affected the carbon prices?," Energy Policy, Elsevier, vol. 103(C), pages 145-164.
    34. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    35. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    36. Roselyne Joyeux & George Milunovich, 2010. "Testing market efficiency in the EU carbon futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(10), pages 803-809.
    37. Guojin Chen & Runze Zhang & Xiangqin Zhao, 2019. "Economic Policy Uncertainty and Stock Risk Features," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 14(3), pages 461-495, September.
    38. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    39. Fenghua Wen & Yujie Yuan & Wei-Xing Zhou, 2019. "Cross-shareholding networks and stock price synchronicity: Evidence from China," Papers 1903.01655, arXiv.org.
    40. Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016. "Uncertainty and crude oil returns," Energy Economics, Elsevier, vol. 55(C), pages 92-100.
    41. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    42. Libo Yin, 2016. "Does oil price respond to macroeconomic uncertainty? New evidence," Empirical Economics, Springer, vol. 51(3), pages 921-938, November.
    43. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    44. repec:dau:papers:123456789/6969 is not listed on IDEAS
    45. Frank Venmans, 2015. "Capital market response to emission allowance prices: a multivariate GARCH approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 577-620, October.
    46. repec:dau:papers:123456789/4210 is not listed on IDEAS
    47. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    48. Mohammad Enamul Hoque & Mohd Azlan Shah Zaidi, 2019. "The impacts of global economic policy uncertainty on stock market returns in regime switching environment: Evidence from sectoral perspectives," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 991-1016, April.
    49. Tang, Bao-jun & Shen, Cheng & Gao, Chao, 2013. "The efficiency analysis of the European CO2 futures market," Applied Energy, Elsevier, vol. 112(C), pages 1544-1547.
    50. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
    51. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    52. Ajay K. Dhamija & Surendra S. Yadav & PK Jain, 2017. "Forecasting volatility of carbon under EU ETS: a multi-phase study," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 299-335, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tao & Guan, Xinyue & Wei, Yigang & Xue, Shan & Xu, Liang, 2023. "Impact of economic policy uncertainty on the volatility of China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 121(C).
    2. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    3. Yu Wei & Lan Bai & Kun Yang & Guiwu Wei, 2021. "Are industry‐level indicators more helpful to forecast industrial stock volatility? Evidence from Chinese manufacturing purchasing managers index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 17-39, January.
    4. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    5. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    6. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    7. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    8. Li, Dongxin & Zhang, Li & Li, Lihong, 2023. "Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model," International Review of Financial Analysis, Elsevier, vol. 88(C).
    9. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    10. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    11. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    12. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    13. Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Resources Policy, Elsevier, vol. 78(C).
    14. Xinyu Wu & Xuebao Yin & Xueting Mei, 2022. "Forecasting the Volatility of European Union Allowance Futures with Climate Policy Uncertainty Using the EGARCH-MIDAS Model," Sustainability, MDPI, vol. 14(7), pages 1-13, April.
    15. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    16. Feng Ma & M. I. M. Wahab & Julien Chevallier & Ziyang Li, 2023. "A tug of war of forecasting the US stock market volatility: Oil futures overnight versus intraday information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 60-75, January.
    17. Wu, Xinyu & Xie, Haibin, 2021. "A realized EGARCH-MIDAS model with higher moments," Finance Research Letters, Elsevier, vol. 38(C).
    18. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. Mei, Dexiang & Zeng, Qing & Cao, Xiang & Diao, Xiaohua, 2019. "Uncertainty and oil volatility: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 155-163.
    20. Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00292-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.