IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v21y2017icp10-20.html
   My bibliography  Save this article

Value-at-Risk estimation with stochastic interest rate models for option-bond portfolios

Author

Listed:
  • Wang, Xiaoyu
  • Xie, Dejun
  • Jiang, Jingjing
  • Wu, Xiaoxia
  • He, Jia

Abstract

This article proposes a Monte Carlo simulation based approach for measuring Value-at-Risk of a portfolio consisting of options and bonds. The approach allows for jump-diffusions in underlying assets and affords to fit a variety of model layout, including both non-parametric and semi-parametric structures. Backtesting was conducted to assess the effectiveness of the method. The algorithm was tested against various trading positions, time horizons, and correlations between asset prices and market return rates. A prominent advantage of our approach is that its implementation does not require prior knowledge of the joint distribution or other statistical features of the related risk factors.

Suggested Citation

  • Wang, Xiaoyu & Xie, Dejun & Jiang, Jingjing & Wu, Xiaoxia & He, Jia, 2017. "Value-at-Risk estimation with stochastic interest rate models for option-bond portfolios," Finance Research Letters, Elsevier, vol. 21(C), pages 10-20.
  • Handle: RePEc:eee:finlet:v:21:y:2017:i:c:p:10-20
    DOI: 10.1016/j.frl.2016.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461231630318X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    2. Anders Wilhelmsson, 2009. "Value at Risk with time varying variance, skewness and kurtosis--the NIG-ACD model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 82-104, March.
    3. Gao, Feng & Song, Fengming, 2008. "ESTIMATION RISK IN GARCH VaR AND ES ESTIMATES," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1404-1424, October.
    4. Castellacci, Giuseppe & Siclari, Michael J., 2003. "The practice of Delta-Gamma VaR: Implementing the quadratic portfolio model," European Journal of Operational Research, Elsevier, vol. 150(3), pages 529-545, November.
    5. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    6. Yong-Jin Kim & Naoto Kunitomo, 1999. "Pricing Options under Stochastic Interest Rates: A New Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 49-70, January.
    7. Jon Danielsson & Casper G. De Vries, 2000. "Value-at-Risk and Extreme Returns," Annals of Economics and Statistics, GENES, issue 60, pages 239-270.
    8. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    9. Jianqing Fan & Juan Gu, 2003. "Semiparametric estimation of Value at Risk," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 261-290, December.
    10. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    11. Milan Rippel & Ivo Jánský, 2011. "Value at Risk forecasting with the ARMA-GARCH family of models in times of increased volatility," Working Papers IES 2011/27, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2011.
    12. Matthew Lorig & Oriol Lozano-Carbass'e, 2012. "Exponential L\'evy-type models with stochastic volatility and stochastic jump-intensity," Papers 1205.2398, arXiv.org, revised Jul 2013.
    13. Chiu, Yen-Chen & Chuang, I-Yuan, 2016. "The performance of the switching forecast model of value-at-risk in the Asian stock markets," Finance Research Letters, Elsevier, vol. 18(C), pages 43-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Rongda & Zhou, Hanxian & Yu, Lean & Jin, Chenglu & Zhang, Shuonan, 2021. "An efficient method for pricing foreign currency options," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    2. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    3. Dan Dobrotă & Gabriela Dobrotă & Tiberiu Dobrescu & Cristina Mohora, 2019. "The Redesigning of Tires and the Recycling Process to Maintain an Efficient Circular Economy," Sustainability, MDPI, vol. 11(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    3. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    4. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    5. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    6. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    7. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    8. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
    9. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    10. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.
    11. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    13. Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
    14. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    15. de Jesús, Raúl & Ortiz, Edgar & Cabello, Alejandra, 2013. "Long run peso/dollar exchange rates and extreme value behavior: Value at Risk modeling," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 139-152.
    16. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    17. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    18. Alexander, Gordon J. & Baptista, Alexandre M., 2009. "Stress testing by financial intermediaries: Implications for portfolio selection and asset pricing," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 65-92, January.
    19. Codrut Florin Ivascu & Daniela Serban, 2023. "Value at Risk Estimation for Non-Gaussian Distributions," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 15(2), pages 181-190, December.
    20. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.

    More about this item

    Keywords

    Value-at-Risk; Monte Carlo simulation; Delta–Gamma approximation; Vasicek model; Cox–Ingersoll–Ross model;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:21:y:2017:i:c:p:10-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.