IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v6y1999i1p49-70.html
   My bibliography  Save this article

Pricing Options under Stochastic Interest Rates: A New Approach

Author

Listed:
  • Yong-Jin Kim
  • Naoto Kunitomo

Abstract

We will generalize the Black-Scholes option pricing formula by incorporating stochastic interest rates. Although the existing literature has obtained some formulae for stock options under stochastic interest rates, the closed-form solutions have been known only under the Gaussian (Merton type) interest rate processes. We will show that an explicit solution, which is an extended Black-Scholes formula under stochastic interest rates in certain asymptotic sense, can be obtained by extending the asymptotic expansion approach when the interest rate volatility is small. This method, called the small-disturbance asymptotics for Itô processes, has recently been developed by Kunitomo and Takahashi (1995, 1998) and Takahashi (1997). We found that the extended Black-Scholes formula is decomposed into the original Black-Scholes formula under the deterministic interest rates and the adjustment term driven by the volatility of interest rates. We will illustrate the numerical accuracy of our new formula by using the Cox–Ingersoll–Ross model for the interest rates. Copyright Kluwer Academic Publishers 1999

Suggested Citation

  • Yong-Jin Kim & Naoto Kunitomo, 1999. "Pricing Options under Stochastic Interest Rates: A New Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 49-70, January.
  • Handle: RePEc:kap:apfinm:v:6:y:1999:i:1:p:49-70
    DOI: 10.1023/A:1010006525552
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1010006525552
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaushik I. Amin & Robert A. Jarrow, 2008. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 15, pages 327-347 World Scientific Publishing Co. Pte. Ltd..
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    3. Amin, Kaushik I & Ng, Victor K, 1993. " Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
    4. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    6. Duffie, Darrell, 1988. "An extension of the Black-Scholes model of security valuation," Journal of Economic Theory, Elsevier, vol. 46(1), pages 194-204, October.
    7. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Cheng, Susan T., 1991. "On the feasibility of arbitrage-based option pricing when stochastic bond price processes are involved," Journal of Economic Theory, Elsevier, vol. 53(1), pages 185-198, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naoto Kunitomo & Akihiko Takahashi, 2003. "Applications of the Asymptotic Expansion Approach based on Malliavin-Watanabe Calculus in Financial Problems," CIRJE F-Series CIRJE-F-245, CIRJE, Faculty of Economics, University of Tokyo.
    2. Cocozza, Rosa & De Simone, Antonio, 2011. "One numerical procedure for two risk factors modeling," MPRA Paper 30859, University Library of Munich, Germany.
    3. repec:eee:finlet:v:21:y:2017:i:c:p:10-20 is not listed on IDEAS
    4. Naoto Kunitomo & Yong-Jin Kim, 2007. "Effects Of Stochastic Interest Rates And Volatility On Contingent Claims," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 71-106.
    5. Naoto Kunitomo & Yong-Jin Kim, 2000. "Effects of Stochastic Interest Rates and Volatility on Contingent Claims," CIRJE F-Series CIRJE-F-67, CIRJE, Faculty of Economics, University of Tokyo.
    6. Naoto Kunitomo & Yong-Jin Kim, 2001. "Effects of Stochastic Interest Rates and Volatility on Contingent Claims (Revised Version)," CIRJE F-Series CIRJE-F-129, CIRJE, Faculty of Economics, University of Tokyo.
    7. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Hedging Futures Options with Stochastic Interest Rates," Research Paper Series 375, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Nikolai Dokuchaev, 2011. "On martingale measures and pricing for continuous bond-stock market with stochastic bond," Papers 1108.0719, arXiv.org, revised Sep 2014.
    9. Yoshida, Nakahiro, 2003. "Conditional expansions and their applications," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 53-81, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:6:y:1999:i:1:p:49-70. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.