IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221021551.html
   My bibliography  Save this article

Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP

Author

Listed:
  • Ilbahar, Esra
  • Kahraman, Cengiz
  • Cebi, Selcuk

Abstract

Most countries intending to replace traditional energy sources with renewable energy sources have started to make major investments in this field. Since renewable energy is a sector requiring large amount of investment costs, evaluation of investment risks are extremely important to make the best investment decisions. However, as risk assessment is a process based on expert judgments, the indecisiveness and cognitive bias of the experts should be eliminated. Therefore, a modified Failure Mode and Effect Analysis (FMEA) based on the prospect theory and interval-valued intuitionistic fuzzy Analytic Hierarchy Process (AHP) is introduced to assess the risks in renewable energy investments for the first time. As a result of the proposed risk assessment approach, renewable energy investment risks are prioritized by effectively overcoming the indecisiveness and cognitive bias of experts.

Suggested Citation

  • Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2022. "Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021551
    DOI: 10.1016/j.energy.2021.121907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    2. Komendantova, Nadejda & Patt, Anthony & Barras, Lucile & Battaglini, Antonella, 2012. "Perception of risks in renewable energy projects: The case of concentrated solar power in North Africa," Energy Policy, Elsevier, vol. 40(C), pages 103-109.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Kira R. Fabrizio, 2013. "The Effect of Regulatory Uncertainty on Investment: Evidence from Renewable Energy Generation," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 29(4), pages 765-798, August.
    5. Haas, Reinhard & Resch, Gustav & Panzer, Christian & Busch, Sebastian & Ragwitz, Mario & Held, Anne, 2011. "Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources – Lessons from EU countries," Energy, Elsevier, vol. 36(4), pages 2186-2193.
    6. Ghimire, Laxman Prasad & Kim, Yeonbae, 2018. "An analysis on barriers to renewable energy development in the context of Nepal using AHP," Renewable Energy, Elsevier, vol. 129(PA), pages 446-456.
    7. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    8. Tietjen, Oliver & Pahle, Michael & Fuss, Sabine, 2016. "Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets," Energy Economics, Elsevier, vol. 58(C), pages 174-185.
    9. Masini, Andrea & Menichetti, Emanuela, 2012. "The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings," Energy Policy, Elsevier, vol. 40(C), pages 28-38.
    10. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    11. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    12. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    13. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    14. Liu, Ximei & Zeng, Ming, 2017. "Renewable energy investment risk evaluation model based on system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 782-788.
    15. Wu, Yunna & Wang, Jing & Ji, Shaoyu & Song, Zixin, 2020. "Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method," Energy, Elsevier, vol. 190(C).
    16. Andrea Masini & E. Menichetti, 2012. "The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings," Post-Print hal-00651706, HAL.
    17. Gatzert, Nadine & Kosub, Thomas, 2016. "Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 982-998.
    18. Zhou, Shan & Yang, Pu, 2020. "Risk management in distributed wind energy implementing Analytic Hierarchy Process," Renewable Energy, Elsevier, vol. 150(C), pages 616-623.
    19. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    20. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    21. Bai, Chunguang & Sarkis, Joseph, 2017. "Improving green flexibility through advanced manufacturing technology investment: Modeling the decision process," International Journal of Production Economics, Elsevier, vol. 188(C), pages 86-104.
    22. Shimbar, Ali & Ebrahimi, Seyed Babak, 2020. "Political risk and valuation of renewable energy investments in developing countries," Renewable Energy, Elsevier, vol. 145(C), pages 1325-1333.
    23. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    24. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    25. Angelopoulos, Dimitrios & Doukas, Haris & Psarras, John & Stamtsis, Giorgos, 2017. "Risk-based analysis and policy implications for renewable energy investments in Greece," Energy Policy, Elsevier, vol. 105(C), pages 512-523.
    26. Ren, Jingzheng & Lützen, Marie, 2017. "Selection of sustainable alternative energy source for shipping: Multi-criteria decision making under incomplete information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1003-1019.
    27. Wu, Yunna & Ke, Yiming & Xu, Chuanbo & Li, Lingwenying, 2019. "An integrated decision-making model for sustainable photovoltaic module supplier selection based on combined weight and cumulative prospect theory," Energy, Elsevier, vol. 181(C), pages 1235-1251.
    28. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    29. Mostafaeipour, Ali & Alvandimanesh, Marzieh & Najafi, Fatemeh & Issakhov, Alibek, 2021. "Identifying challenges and barriers for development of solar energy by using fuzzy best-worst method: A case study," Energy, Elsevier, vol. 226(C).
    30. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
    31. Gatzert, Nadine & Vogl, Nikolai, 2016. "Evaluating investments in renewable energy under policy risks," Energy Policy, Elsevier, vol. 95(C), pages 238-252.
    32. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    33. Safarzyńska, Karolina & van den Bergh, Jeroen C.J.M., 2017. "Financial stability at risk due to investing rapidly in renewable energy," Energy Policy, Elsevier, vol. 108(C), pages 12-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M, Jisma & Mohan, Vivek & Thomas, Mini Shaji & Madhu M, Nimal, 2022. "Risk-Calibrated conventional-renewable generation mix using master-slave portfolio approach guided by flexible investor preferencing," Energy, Elsevier, vol. 245(C).
    2. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    3. Rafael Bambirra & Lais Schiavo & Marina Lima & Giovanna Miranda & Iolanda Reis & Michael Cassemiro & Antônio Andrade & Fernanda Laender & Rafael Silva & Douglas Vieira & Petr Ekel, 2023. "Robust Multiobjective Decision Making in the Acquisition of Energy Assets," Energies, MDPI, vol. 16(16), pages 1-21, August.
    4. Shahnazi, Rouhollah & Alimohammadlou, Moslem, 2022. "Investigating risks in renewable energy in oil-producing countries through multi-criteria decision-making methods based on interval type-2 fuzzy sets: A case study of Iran," Renewable Energy, Elsevier, vol. 191(C), pages 1009-1027.
    5. Guo, Hongye & Chen, Qixin & Shahidehpour, Mohammad & Xia, Qing & Kang, Chongqing, 2022. "Bidding behaviors of GENCOs under bounded rationality with renewable energy," Energy, Elsevier, vol. 250(C).
    6. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    7. Wenjiao Zai & Yuying He & Huazhang Wang, 2023. "Risk Prediction Method for Renewable Energy Investments Abroad Based on Cloud-DBN," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    8. Shang, Jingyi & Gao, Jinfeng & Jiang, Xin & Liu, Mingguang & Liu, Dunnan, 2023. "Optimal configuration of hybrid energy systems considering power to hydrogen and electricity-price prediction: A two-stage multi-objective bi-level framework," Energy, Elsevier, vol. 263(PF).
    9. Veronika V. Yankovskaya & Timur A. Mustafin & Dmitry A. Endovitsky & Artem V. Krivosheev, 2022. "Corporate Social Responsibility as an Alternative Approach to Financial Risk Management: Advantages for Sustainable Development," Risks, MDPI, vol. 10(5), pages 1-18, May.
    10. Rahmani, Amir & Mashayekh, Javad & Aboojafari, Roohallah & Bonyadi Naeini, Ali, 2023. "Determinants of households' intention for investment in renewable energy projects," Renewable Energy, Elsevier, vol. 205(C), pages 823-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yunna & Wang, Jing & Ji, Shaoyu & Song, Zixin, 2020. "Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method," Energy, Elsevier, vol. 190(C).
    2. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    3. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    4. Bogdan Klepacki & Barbara Kusto & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski & Aleksandra Perkowska & Tomasz Rokicki, 2021. "Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas," Energies, MDPI, vol. 14(11), pages 1-17, May.
    5. Hashemizadeh, Ali & Ju, Yanbing & Bamakan, Seyed Mojtaba Hosseini & Le, Hoang Phong, 2021. "Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions," Energy, Elsevier, vol. 214(C).
    6. Ozorhon, Beliz & Batmaz, Arda & Caglayan, Semih, 2018. "Generating a framework to facilitate decision making in renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 217-226.
    7. Abba, Z.Y.I. & Balta-Ozkan, N. & Hart, P., 2022. "A holistic risk management framework for renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    9. Huang, Jianbai & Liu, Jia & Zhang, Hongwei & Guo, Yaoqi, 2020. "Sustainable risk analysis of China's overseas investment in iron ore," Resources Policy, Elsevier, vol. 68(C).
    10. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    11. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    12. Shahnazi, Rouhollah & Alimohammadlou, Moslem, 2022. "Investigating risks in renewable energy in oil-producing countries through multi-criteria decision-making methods based on interval type-2 fuzzy sets: A case study of Iran," Renewable Energy, Elsevier, vol. 191(C), pages 1009-1027.
    13. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    14. Chang, Kai & Zeng, Yonghong & Wang, Weihong & Wu, Xin, 2019. "The effects of credit policy and financial constraints on tangible and research & development investment: Firm-level evidence from China's renewable energy industry," Energy Policy, Elsevier, vol. 130(C), pages 438-447.
    15. Songrui Li & Yitang Hu, 2022. "A Multi-Criteria Framework to Evaluate the Sustainability of Renewable Energy: A 2-Tuple Linguistic Grey Relation Model from the Perspective of the Prospect Theory," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    16. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    17. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2020. "Optimal green energy source selection: An eclectic decision," Energy & Environment, , vol. 31(5), pages 842-859, August.
    18. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    19. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    20. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.