IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6374-d1699779.html
   My bibliography  Save this article

Development of a Sustainability-Oriented KPI Selection Model for Manufacturing Processes

Author

Listed:
  • Kristo Karjust

    (Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Marmar Mehrparvar

    (Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Sergei Kaganski

    (Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Tõnis Raamets

    (Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

Abstract

Modern manufacturing systems operate in a global and competitive environment, where sustainability has become a critical driver for performance. Performance measurement, as a method for monitoring enterprise processes, plays a central role in aligning operational efficiency with sustainable development goals. Recently, a number of different frameworks, systems, and methods have been proposed for small and medium enterprises. Key performance indicators (KPIs) are known to be powerful tools which provide accurate information regarding bottlenecks and weak spots in companies. The purpose of the current study is to develop an advanced KPI selection/prioritization model and apply it in practice. The initial set of KPIs are obtained based on a literature review. The expert’s knowledge, outlier methods, and optimization of the enterprise analysis model (EAM) are utilized for reducing the initial set of KPIs. A fuzzy analytical hierarchy process (AHP) is implemented for prioritization of the criteria. Five different MCDM (multi-criteria decision-making) algorithms are implemented for prioritization of the KPIs. The recently introduced RADAR method is extended to the fuzzy RADAR method, providing a flexible approach for handling uncertainties. An analysis and comparison of the rankings obtained by utilizing five MCDM algorithms is performed. The prioritized KPIs provide valuable input for improving KPIs with the highest impact in particular small and medium-sized enterprises (SMEs) when implementing sustainability-aligned performance metrics.

Suggested Citation

  • Kristo Karjust & Marmar Mehrparvar & Sergei Kaganski & Tõnis Raamets, 2025. "Development of a Sustainability-Oriented KPI Selection Model for Manufacturing Processes," Sustainability, MDPI, vol. 17(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6374-:d:1699779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carolina Cruz Villazón & Leonardo Sastoque Pinilla & José Ramón Otegi Olaso & Nerea Toledo Gandarias & Norberto López de Lacalle, 2020. "Identification of Key Performance Indicators in Project-Based Organisations through the Lean Approach," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    2. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2022. "Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP," Energy, Elsevier, vol. 239(PA).
    3. Md. Abdul Moktadir & Ashish Dwivedi & Akib Rahman & Charbel Jose Chiappetta Jabbour & Sanjoy Kumar Paul & Razia Sultana & Jitender Madaan, 2020. "An investigation of key performance indicators for operational excellence towards sustainability in the leather products industry," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3331-3351, December.
    4. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeynep Gökkuş & Sevil Şentürk & Fırat Alatürk, 2023. "Rankıng Districts of Çanakkale in Terms of Rangeland Quality by Fuzzy MCDM Methods," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(4), pages 636-663, December.
    2. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    3. Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon & Wirachchaya Chanpuypetch, 2024. "Navigating Supply Chain Resilience: A Hybrid Approach to Agri-Food Supplier Selection," Mathematics, MDPI, vol. 12(10), pages 1-42, May.
    4. Juan Carlos Martín & Veronika Rudchenko & María-Victoria Sánchez-Rebull, 2020. "The Role of Nationality and Hotel Class on Guests’ Satisfaction. A Fuzzy-TOPSIS Approach Applied in Saint Petersburg," Administrative Sciences, MDPI, vol. 10(3), pages 1-24, September.
    5. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    6. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    7. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    8. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    9. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    10. Noori, Amir & Bonakdari, Hossein & Salimi, Amir Hossein & Gharabaghi, Bahram, 2021. "A group Multi-Criteria Decision-Making method for water supply choice optimization," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    11. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    12. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    13. repec:osf:osfxxx:3cg8j_v1 is not listed on IDEAS
    14. Nitidetch Koohathongsumrit & Pongchanun Luangpaiboon, 2022. "An integrated FAHP–ZODP approach for strategic marketing information system project selection," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1792-1809, September.
    15. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    16. Xin, Li & Xi, Chen & Sagir, Mujgan & Wenbo, Zhang, 2023. "How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    17. Waseem Alam & Haiyan Wang & Amjad Pervez & Muhammad Safdar & Arshad Jamal & Meshal Almoshaogeh & Hassan M. Al-Ahmadi, 2024. "Analysis and Prediction of Risky Driving Behaviors Using Fuzzy Analytical Hierarchy Process and Machine Learning Techniques," Sustainability, MDPI, vol. 16(11), pages 1-27, May.
    18. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    19. Adiprasetyo, Teguh & Suhartoyo, Hery & Firdaus, Arief, 2017. "Developing Strategy for Advancing Organic Agriculture as Sustainable Agricultural Practice," INA-Rxiv wb37h, Center for Open Science.
    20. Aleksandar Aleksić & Danijela Tadić, 2023. "Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    21. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6374-:d:1699779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.