IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4419-d789132.html
   My bibliography  Save this article

A Multi-Criteria Framework to Evaluate the Sustainability of Renewable Energy: A 2-Tuple Linguistic Grey Relation Model from the Perspective of the Prospect Theory

Author

Listed:
  • Songrui Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Yitang Hu

    (School of Water Conservancy and Hydropower Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

The unique resources and environmental advantages of renewable energy make it an essential component of energy strategies and a meaningful way to achieve “carbon neutrality”. However, due to limitations relating to ecological factors and geographical locations, renewable energy power generation faces many problems, including instability, resulting in unsustainable development. Few studies have been conducted on the sustainability of renewable energy. Therefore, a multi-criteria decision-making (MCDM) framework for evaluating renewable energy sustainability is put forward. Based on a 2-tuple linguistic grey relation model and the prospect theory, the MCDM framework can comprehensively analyze the factors that may influence renewable energy sustainability in terms of resources, the environment, society, technology, and the economy. The combination of the 2-tuple linguistic model and the prospect theory can improve the objectivity of decision making. Taking China as the research object, this study finds that the profit–loss ratios for the four alternatives considered are { 0.969 , 0.432 , 0.395 , 0.369 } for solar photovoltaic power, wind power, hydropower, and biomass power, respectively, ranked from best to worst. Based on the sensitivity analysis, the MCDM framework can change its parameters based on the relevant psychological characteristics and then establish a suitable system for decision making. The MCDM framework proposed in this study can provide investors with decision-making references and help governmental agencies formulate renewable energy policies.

Suggested Citation

  • Songrui Li & Yitang Hu, 2022. "A Multi-Criteria Framework to Evaluate the Sustainability of Renewable Energy: A 2-Tuple Linguistic Grey Relation Model from the Perspective of the Prospect Theory," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4419-:d:789132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    2. Li, Wenhua & Yu, Suihuai & Pei, Huining & Zhao, Chuan & Tian, Baozhen, 2017. "A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 49-64.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Stefan Dragos Cîrstea & Calin Moldovan-Teselios & Andreea Cîrstea & Antoniu Claudiu Turcu & Cosmin Pompei Darab, 2018. "Evaluating Renewable Energy Sustainability by Composite Index," Sustainability, MDPI, vol. 10(3), pages 1-21, March.
    5. Georgopoulou, E. & Lalas, D. & Papagiannakis, L., 1997. "A multicriteria decision aid approach for energy planning problems: The case of renewable energy option," European Journal of Operational Research, Elsevier, vol. 103(1), pages 38-54, November.
    6. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    7. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    8. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    9. Chang, Rui-Dong & Zuo, Jian & Zhao, Zhen-Yu & Zillante, George & Gan, Xiao-Long & Soebarto, Veronica, 2017. "Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 48-56.
    10. Wang, Zihan & Li, Jiaxin & Liu, Jing & Shuai, Chuanmin, 2020. "Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China," Energy Policy, Elsevier, vol. 137(C).
    11. Huiru Zhao & Sen Guo, 2015. "External Benefit Evaluation of Renewable Energy Power in China for Sustainability," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    12. Nigim, K. & Munier, N. & Green, J., 2004. "Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources," Renewable Energy, Elsevier, vol. 29(11), pages 1775-1791.
    13. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    14. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    15. Beccali, M. & Cellura, M. & Mistretta, M., 2003. "Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology," Renewable Energy, Elsevier, vol. 28(13), pages 2063-2087.
    16. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    17. Fang, Kai & Zhou, Yunheng & Wang, Shuang & Ye, Ruike & Guo, Sujian, 2018. "Assessing national renewable energy competitiveness of the G20: A revised Porter's Diamond Model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 719-731.
    18. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    19. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2008. "Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process," Energy Policy, Elsevier, vol. 36(3), pages 1074-1089, March.
    20. Diakoulaki, D. & Karangelis, F., 2007. "Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 716-727, May.
    21. Aparna Katre & Arianna Tozzi, 2018. "Assessing the Sustainability of Decentralized Renewable Energy Systems: A Comprehensive Framework with Analytical Methods," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    22. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    23. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    24. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    2. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    3. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    4. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    5. Bilgili, Faik & Zarali, Fulya & Ilgün, Miraç Fatih & Dumrul, Cüneyt & Dumrul, Yasemin, 2022. "The evaluation of renewable energy alternatives for sustainable development in Turkey using ‌intuitionistic‌ ‌fuzzy‌-TOPSIS method," Renewable Energy, Elsevier, vol. 189(C), pages 1443-1458.
    6. Mohamed Ali Elleuch & Marwa Mallek & Ahmed Frikha & Wafik Hachicha & Awad M. Aljuaid & Murad Andejany, 2021. "Solving a Multiple User Energy Source Selection Problem Using a Fuzzy Multi-Criteria Group Decision-Making Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    7. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    9. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    10. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    11. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    12. Deveci, Kaan & Güler, Önder, 2020. "A CMOPSO based multi-objective optimization of renewable energy planning: Case of Turkey," Renewable Energy, Elsevier, vol. 155(C), pages 578-590.
    13. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    14. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    15. Abteen Ijadi Maghsoodi & Arta Ijadi Maghsoodi & Amir Mosavi & Timon Rabczuk & Edmundas Kazimieras Zavadskas, 2018. "Renewable Energy Technology Selection Problem Using Integrated H-SWARA-MULTIMOORA Approach," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    16. Esra Karaka & Ozan Veli Y ld ran, 2019. "Evaluation of Renewable Energy Alternatives for Turkey via Modified Fuzzy AHP," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 31-39.
    17. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2020. "Optimal green energy source selection: An eclectic decision," Energy & Environment, , vol. 31(5), pages 842-859, August.
    18. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    19. Hashemizadeh, Ali & Ju, Yanbing & Bamakan, Seyed Mojtaba Hosseini & Le, Hoang Phong, 2021. "Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions," Energy, Elsevier, vol. 214(C).
    20. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2022. "Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4419-:d:789132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.