IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i3p1241-1248.html
   My bibliography  Save this article

Backcasting sustainable freight transport systems for Europe in 2050

Author

Listed:
  • Mattila, Tuomas
  • Antikainen, Riina

Abstract

European freight transport emissions and fuel consumption are projected to increase. This study focuses on long distance freight transport (LDFT) and explores possible sustainable futures through quantitative modeling. The evaluation was part of European foresight process between researchers, policy makers and freight companies (FREIGHTVISION). Greenhouse gas (GHG) emissions and energy demand of road, rail and inland waterways were estimated for an EU-27 in 2005. Development was extrapolated to 2050 based on technology and freight performance forecasts. Stakeholders found the forecasted GHG emissions and fossil fuel share unsustainable, so alternative futures were developed with backcasting. The developed emission model was run with random parameter combinations to screen a set of sustainable futures, with an 80% reduction of GHG emissions and fossil fuel share. Freight transport performance was not controlled in the backcasts, but several sustainable futures were found if significant changes in transport efficiency and energy mix are implemented. In spite of agreeing on the importance of reducing emissions, stakeholders had difficulties in choosing a preferred technological future. Simple models were found to be an effective tool for communicating the influence of various measures. Further research is recommended to screen preferable technological roadmaps from the broad range of available futures.

Suggested Citation

  • Mattila, Tuomas & Antikainen, Riina, 2011. "Backcasting sustainable freight transport systems for Europe in 2050," Energy Policy, Elsevier, vol. 39(3), pages 1241-1248, March.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1241-1248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00875-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, John Bridger, 1982. "Energy backcasting A proposed method of policy analysis," Energy Policy, Elsevier, vol. 10(4), pages 337-344, December.
    2. Ribeiro, Suzana K & Kobayashi, Shigeki & Beuthe, Michel & Gasca, Jorge & Greene, David & Lee, David S. & Muromachi, Yasunori & Newton, Peter J. & Plotkin, Steven & Sperling, Daniel & Wit, Ron & Zhou, , 2007. "Transportation and its Infrastructure," Institute of Transportation Studies, Working Paper Series qt98m5t1rv, Institute of Transportation Studies, UC Davis.
    3. Akerman, Jonas & Hojer, Mattias, 2006. "How much transport can the climate stand?--Sweden on a sustainable path in 2050," Energy Policy, Elsevier, vol. 34(14), pages 1944-1957, September.
    4. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
    5. Kerstin Cuhls & Ahti Salo, 2003. "Technology foresight-past and future," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(2-3), pages 79-82.
    6. Anderson, Kevin L. & Mander, Sarah L. & Bows, Alice & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part II: Scenarios for a 60% CO2 reduction in the UK," Energy Policy, Elsevier, vol. 36(10), pages 3764-3773, October.
    7. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    8. Vallentin, Daniel, 2008. "Policy drivers and barriers for coal-to-liquids (CtL) technologies in the United States," Energy Policy, Elsevier, vol. 36(8), pages 3188-3201, August.
    9. Bonilla, David, 2009. "Fuel demand on UK roads and dieselisation of fuel economy," Energy Policy, Elsevier, vol. 37(10), pages 3769-3778, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soria-Lara, Julio A. & Banister, David, 2017. "Participatory visioning in transport backcasting studies: Methodological lessons from Andalusia (Spain)," Journal of Transport Geography, Elsevier, vol. 58(C), pages 113-126.
    2. Guimarães, Vanessa de Almeida & Leal Junior, Ilton Curty & da Silva, Marcelino Aurélio Vieira, 2018. "Evaluating the sustainability of urban passenger transportation by Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 732-752.
    3. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    4. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    5. Siti Indati Mustapa & Hussain Ali Bekhet, 2015. "Investigating Factors Affecting CO2 Emissions in Malaysian Road Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1073-1083.
    6. Yip, Tsz Leung & Wong, Mei Chi, 2015. "The Nicaragua Canal: scenarios of its future roles," Journal of Transport Geography, Elsevier, vol. 43(C), pages 1-13.
    7. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Bueno, Gorka, 2012. "Analysis of scenarios for the reduction of energy consumption and GHG emissions in transport in the Basque Country," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1988-1998.
    9. Ján Ližbetin & Martina Hlatká & Ladislav Bartuška, 2018. "Issues Concerning Declared Energy Consumption and Greenhouse Gas Emissions of FAME Biofuels," Sustainability, MDPI, vol. 10(9), pages 1-11, August.
    10. Soria-Lara, Julio A. & Banister, David, 2017. "Dynamic participation processes for policy packaging in transport backcasting studies," Transport Policy, Elsevier, vol. 58(C), pages 19-30.
    11. Pieter van Langen & Gerdje Pijper & Pieter de Vries & Frances Brazier, 2023. "Participatory Design of Participatory Systems for Sustainable Collaboration: Exploring Its Potential in Transport and Logistics," Sustainability, MDPI, vol. 15(10), pages 1-43, May.
    12. Rui Ren & Wanjie Hu & Jianjun Dong & Bo Sun & Yicun Chen & Zhilong Chen, 2019. "A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy," IJERPH, MDPI, vol. 17(1), pages 1-25, December.
    13. Soria-Lara, Julio A. & Ariza-Álvarez, Amor & Aguilera-Benavente, Francisco & Cascajo, Rocío & Arce-Ruiz, Rosa M. & López, Cristina & Gómez-Delgado, Montserrat, 2021. "Participatory visioning for building disruptive future scenarios for transport and land use planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    14. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    15. Khrisydel Rhea M. Supapo & Lorafe Lozano & Ian Dominic F. Tabañag & Edward M. Querikiol, 2022. "A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands," Energies, MDPI, vol. 15(13), pages 1-19, June.
    16. Soria-Lara, Julio A. & Banister, David, 2018. "Evaluating the impacts of transport backcasting scenarios with multi-criteria analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 26-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    2. Mattila, Tuomas & Koskela, Sirkka & Seppälä, Jyri & Mäenpää, Ilmo, 2013. "Sensitivity analysis of environmentally extended input–output models as a tool for building scenarios of sustainable development," Ecological Economics, Elsevier, vol. 86(C), pages 148-155.
    3. Hickman, Robin & Saxena, Sharad & Banister, David & Ashiru, Olu, 2012. "Examining transport futures with scenario analysis and MCA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 560-575.
    4. Wen, Zong-guo & Di, Jing-han & Yu, Xue-wei & Zhang, Xuan, 2017. "Analyses of CO2 mitigation roadmap in China’s power industry: Using a Backcasting Model," Applied Energy, Elsevier, vol. 205(C), pages 644-653.
    5. Jesus Gonzalez-Feliu & Christian Ambrosini & Jean-Louis Routhier, 2010. "CO2 reduction for urban goods movement: is it possible to reach the Factor 4 by 2050?," Post-Print halshs-00835930, HAL.
    6. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    7. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    8. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
    9. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    10. Welfle, Andrew & Gilbert, Paul & Thornley, Patricia, 2014. "Securing a bioenergy future without imports," Energy Policy, Elsevier, vol. 68(C), pages 1-14.
    11. Wolfgang Weimer-Jehle & Stefan Vögele & Wolfgang Hauser & Hannah Kosow & Witold-Roger Poganietz & Sigrid Prehofer, 2020. "Socio-technical energy scenarios: state-of-the-art and CIB-based approaches," Climatic Change, Springer, vol. 162(4), pages 1723-1741, October.
    12. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    13. O' Mahony, Tadhg & Zhou, P. & Sweeney, John, 2013. "Integrated scenarios of energy-related CO2 emissions in Ireland: A multi-sectoral analysis to 2020," Ecological Economics, Elsevier, vol. 93(C), pages 385-397.
    14. Lindholm, Maria Eleonor & Blinge, Magnus, 2014. "Assessing knowledge and awareness of the sustainable urban freight transport among Swedish local authority policy planners," Transport Policy, Elsevier, vol. 32(C), pages 124-131.
    15. Banister, David & Hickman, Robin, 2013. "Transport futures: Thinking the unthinkable," Transport Policy, Elsevier, vol. 29(C), pages 283-293.
    16. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    17. Kishita, Yusuke & McLellan, Benjamin C. & Giurco, Damien & Aoki, Kazumasu & Yoshizawa, Go & Handoh, Itsuki C., 2017. "Designing backcasting scenarios for resilient energy futures," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 114-125.
    18. Vukasinovic, Vladimir & Gordic, Dusan & Zivkovic, Marija & Koncalovic, Davor & Zivkovic, Dubravka, 2019. "Long-term planning methodology for improving wood biomass utilization," Energy, Elsevier, vol. 175(C), pages 818-829.
    19. de Bruin, Jilske Olda & Kok, Kasper & Hoogstra-Klein, Marjanke Alberttine, 2017. "Exploring the potential of combining participative backcasting and exploratory scenarios for robust strategies: Insights from the Dutch forest sector," Forest Policy and Economics, Elsevier, vol. 85(P2), pages 269-282.
    20. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1241-1248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.