IDEAS home Printed from
   My bibliography  Save this article

Modular participatory backcasting: A unifying framework for strategic planning in the heating sector


  • Pereverza, Kateryna
  • Pasichnyi, Oleksii
  • Kordas, Olga


This study proposes a novel framework, modular participatory backcasting (mPB), for long-term planning in the heating sector. The mPB framework is based on participatory backcasting (PB) and integrates principles of modularity, participatory modelling, and transdisciplinarity. We discerned for mPB 13 modules that can be arranged according to the purpose and specifics of each planning process. The design of the mPB framework and its implementation are presented for the cases of participatory strategic planning processes to achieve sustainable heat provision by 2050 in a Ukrainian city (Bila Tserkva) and a Serbian city (Niš). The results show that mPB allows adaptability to local contexts and limitations through exclusion, augmentation, substitution, splitting and inverting properties of modularity; decreases the learning time for applying the framework in a novel context; increases the reproducibility and transparency of long-term energy planning processes; enables efficient integration of quantitative methods into the participatory process; and advances collaboration between academia and society. The proposed framework is beneficial for advancement of local planning and policy-making practices by creating strategies with a wider support of stakeholders. It could also be useful for further research through cross-case analysis.

Suggested Citation

  • Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
  • Handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:123-134
    DOI: 10.1016/j.enpol.2018.09.027

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Anderson, Kevin L. & Mander, Sarah L. & Bows, Alice & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part II: Scenarios for a 60% CO2 reduction in the UK," Energy Policy, Elsevier, vol. 36(10), pages 3764-3773, October.
    2. Font Vivanco, David & Kemp, René & van der Voet, Ester, 2016. "How to deal with the rebound effect? A policy-oriented approach," Energy Policy, Elsevier, vol. 94(C), pages 114-125.
    3. Mark Purcell, 2006. "Urban Democracy and the Local Trap," Urban Studies, Urban Studies Journal Limited, vol. 43(11), pages 1921-1941, October.
    4. Robinson, John Bridger, 1982. "Energy backcasting A proposed method of policy analysis," Energy Policy, Elsevier, vol. 10(4), pages 337-344, December.
    5. Ruzzenenti, F. & Basosi, R., 2008. "The rebound effect: An evolutionary perspective," Ecological Economics, Elsevier, vol. 67(4), pages 526-537, November.
    6. Zimmermann, Martin & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Integrating Delphi and participatory backcasting in pursuit of trustworthiness — The case of electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1605-1621.
    7. Zivkovic, Marija & Pereverza, Kateryna & Pasichnyi, Oleksii & Madzarevic, Aleksandar & Ivezic, Dejan & Kordas, Olga, 2016. "Exploring scenarios for more sustainable heating: The case of Niš, Serbia," Energy, Elsevier, vol. 115(P3), pages 1758-1770.
    8. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    9. Voinov, Alexey & Gaddis, Erica J. Brown, 2008. "Lessons for successful participatory watershed modeling: A perspective from modeling practitioners," Ecological Modelling, Elsevier, vol. 216(2), pages 197-207.
    10. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    11. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
    12. Rutter, Paul & Keirstead, James, 2012. "A brief history and the possible future of urban energy systems," Energy Policy, Elsevier, vol. 50(C), pages 72-80.
    13. Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.
    14. Mike Hodson & Frank W. Geels & Andy McMeekin, 2017. "Reconfiguring Urban Sustainability Transitions, Analysing Multiplicity," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-20, February.
    15. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    16. Buonomano, A. & Calise, F. & Palombo, A., 2013. "Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model," Applied Energy, Elsevier, vol. 103(C), pages 588-606.
    17. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    18. Gabillet, Pauline, 2015. "Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district," Energy Policy, Elsevier, vol. 78(C), pages 189-197.
    19. Baldwin, Carliss & MacCormack, Alan & Rusnak, John, 2014. "Hidden structure: Using network methods to map system architecture," Research Policy, Elsevier, vol. 43(8), pages 1381-1397.
    20. Knutsson, David & Werner, Sven & Ahlgren, Erik O., 2006. "Combined heat and power in the Swedish district heating sector--impact of green certificates and CO2 trading on new investments," Energy Policy, Elsevier, vol. 34(18), pages 3942-3952, December.
    21. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    22. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    23. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    24. Magnusson, Dick, 2012. "Swedish district heating—A system in stagnation: Current and future trends in the district heating sector," Energy Policy, Elsevier, vol. 48(C), pages 449-459.
    25. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    26. Ritchey, Tom, 2018. "General morphological analysis as a basic scientific modelling method," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 81-91.
    27. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    28. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    29. Pereverza, Kateryna & Pasichnyi, Oleksii & Lazarevic, David & Kordas, Olga, 2017. "Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection," Applied Energy, Elsevier, vol. 186(P2), pages 115-125.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:123-134. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.