IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v118y2018icp257-269.html
   My bibliography  Save this article

Estimating temperature effects on the Italian electricity market

Author

Listed:
  • Bigerna, Simona

Abstract

This paper provides empirical evidence of the effects that weather conditions exert on the electricity market, offering a new contribution to the understanding of hourly regional price formation in the day ahead market in Italy. The empirical estimation uses a new data set of hourly data on both market variables and temperature variables.

Suggested Citation

  • Bigerna, Simona, 2018. "Estimating temperature effects on the Italian electricity market," Energy Policy, Elsevier, vol. 118(C), pages 257-269.
  • Handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:257-269
    DOI: 10.1016/j.enpol.2018.03.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518302015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.03.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papakostas, K. & Kyriakis, N., 2005. "Heating and cooling degree-hours for Athens and Thessaloniki, Greece," Renewable Energy, Elsevier, vol. 30(12), pages 1873-1880.
    2. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    3. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    4. Simona Bigerna, Carlo Andrea Bollino and Paolo Polinori, 2016. "Renewable Energy and Market Power in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    5. Bruno Bosco & Lucia Parisio & Matteo Pelagatti & Fabio Baldi, 2010. "Long-run relations in european electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 805-832.
    6. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    7. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    8. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    9. Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
    10. Paschen, Marius, 2016. "Dynamic analysis of the German day-ahead electricity spot market," Energy Economics, Elsevier, vol. 59(C), pages 118-128.
    11. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    12. Kevin F. Forbes and Ernest M. Zampelli, 2014. "Do Day-Ahead Electricity Prices Reflect Economic Fundamentals? Evidence from the California ISO," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    13. Véliz, Karina D. & Kaufmann, Robert K. & Cleveland, Cutler J. & Stoner, Anne M.K., 2017. "The effect of climate change on electricity expenditures in Massachusetts," Energy Policy, Elsevier, vol. 106(C), pages 1-11.
    14. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
    15. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    16. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    17. Breuer, Janice Boucher & McNown, Robert & Wallace, Myles S, 2001. "Misleading Inferences from Panel Unit-Root Tests with an Illustration from Purchasing Power Parity," Review of International Economics, Wiley Blackwell, vol. 9(3), pages 482-493, August.
    18. Hsu, Yi-Chung & Lee, Chien-Chiang & Lee, Chi-Chuan, 2008. "Revisited: Are shocks to energy consumption permanent or temporary? New evidence from a panel SURADF approach," Energy Economics, Elsevier, vol. 30(5), pages 2314-2330, September.
    19. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    20. Maria Jesus Herrerias and Eric Girardin, 2013. "Seasonal Patterns of Energy in China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    21. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    22. Simona Bigerna, Carlo Andrea Bollino and Paolo Polinori, 2016. "Market Power and Transmission Congestion in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    23. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    24. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    25. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
    26. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    27. Joshua Graff Zivin and Kevin Novan, 2016. "Upgrading Efficiency and Behavior: Electricity Savings from Residential Weatherization Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    28. Peirson, John & Henley, Andrew, 1994. "Electricity load and temperature : Issues in dynamic specification," Energy Economics, Elsevier, vol. 16(4), pages 235-243, October.
    29. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
    30. Jovanović, Saša & Savić, Slobodan & Bojić, Milorad & Djordjević, Zorica & Nikolić, Danijela, 2015. "The impact of the mean daily air temperature change on electricity consumption," Energy, Elsevier, vol. 88(C), pages 604-609.
    31. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    32. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    33. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Bunn, Derek, 2016. "Weather and market specificities in the regional transmission of renewable energy price effects," Energy, Elsevier, vol. 114(C), pages 188-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marwan, Marwan, 2020. "The impact of probability of electricity price spike and outside temperature to define total expected cost for air conditioning," Energy, Elsevier, vol. 195(C).
    2. Mosquera-López, Stephanía & Uribe, Jorge M. & Manotas-Duque, Diego F., 2018. "Effect of stopping hydroelectric power generation on the dynamics of electricity prices: An event study approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 456-467.
    3. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosquera-López, Stephanía & Uribe, Jorge M. & Manotas-Duque, Diego F., 2018. "Effect of stopping hydroelectric power generation on the dynamics of electricity prices: An event study approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 456-467.
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    3. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    4. Lisi, Francesco & Pelagatti, Matteo M., 2018. "Component estimation for electricity market data: Deterministic or stochastic?," Energy Economics, Elsevier, vol. 74(C), pages 13-37.
    5. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    6. Oluwasola E Omoju & Jinkai Li & Jin Zhang & Abdul Rauf & Victor Edem Sosoo, 2020. "Implications of shocks in energy consumption for energy policy in sub-Saharan Africa," Energy & Environment, , vol. 31(6), pages 1077-1097, September.
    7. Muhammad Shahbaz & Aviral Kumar Tiwari & Saleheen Khan, 2016. "Is energy consumption per capita stationary? Evidence from first and second generation panel unit root tests," Economics Bulletin, AccessEcon, vol. 36(3), pages 1656-1669.
    8. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    9. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    10. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    11. Bartosz Uniejewski & Rafał Weron, 2018. "Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models," Energies, MDPI, Open Access Journal, vol. 11(8), pages 1-26, August.
    12. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    13. Angelica, Gianfreda & Lucia, Parisio & Matteo, Pelagatti, 2017. "The RES-induced Switching Effect Across Fossil Fuels: An Analysis of the Italian Day-Ahead and Balancing Prices and Their Connected Costs," Working Papers 360, University of Milano-Bicocca, Department of Economics, revised 03 Feb 2017.
    14. Meng, Ming & Payne, James E. & Lee, Junsoo, 2013. "Convergence in per capita energy use among OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 536-545.
    15. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    16. Hasanov, Mübariz & Telatar, Erdinc, 2011. "A re-examination of stationarity of energy consumption: Evidence from new unit root tests," Energy Policy, Elsevier, vol. 39(12), pages 7726-7738.
    17. Sirin, Selahattin Murat & Yilmaz, Berna N., 2020. "Variable renewable energy technologies in the Turkish electricity market: Quantile regression analysis of the merit-order effect," Energy Policy, Elsevier, vol. 144(C).
    18. Shahbaz, Muhammad & Omay, Tolga & Roubaud, David, 2019. "Sharp and Smooth Breaks in Unit Root Testing of Renewable Energy Consumption: The Way Forward," MPRA Paper 92176, University Library of Munich, Germany, revised 11 Feb 2019.
    19. Tarek Atalla & Simona Bigerna & Carlo Andrea Bollino, 2018. "Energy demand elasticities and weather worldwide," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(1), pages 207-237, April.
    20. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2016. "Renewable-to-total electricity consumption ratio: Estimating the permanent or transitory fluctuations based on flexible Fourier stationarity and unit root tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1409-1427.

    More about this item

    Keywords

    Hourly electricity market; Temperature effects; Hourly temperature data; Vector autoregression; Non-parametric regression;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:257-269. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.