IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v114y2016icp188-200.html
   My bibliography  Save this article

Weather and market specificities in the regional transmission of renewable energy price effects

Author

Listed:
  • Figueiredo, Nuno Carvalho
  • Silva, Patrícia Pereira da
  • Bunn, Derek

Abstract

This study is motivated by the observation that the effects of renewable energy output variations across several integrated power markets are likely to be complicated by price arbitrage and weather dynamics. Wind in particular has supply side effects when associated with substantial generating facilities, but also demand side influences when associated with extreme weather conditions. To unravel these effects, daily electricity prices and the weather variables wind, temperature and their interaction (wind chill) in the Central-West Europe coupled market were analysed from 2007 to the end of 2014 by means of vector autoregressions. The spillover effects were found to be quite subtle. Despite efficient price arbitrage, it is not the case that daily wind output shocks diffuse uniformly across all markets, or that the largest generator of wind energy creates the most significant spillovers or that high wind conditions necessarily lead to lower prices. Market specificities matter and are important for operational prediction and weather risk hedging.

Suggested Citation

  • Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Bunn, Derek, 2016. "Weather and market specificities in the regional transmission of renewable energy price effects," Energy, Elsevier, vol. 114(C), pages 188-200.
  • Handle: RePEc:eee:energy:v:114:y:2016:i:c:p:188-200
    DOI: 10.1016/j.energy.2016.07.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310908
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
    2. Banovac, Eraldo & Glavić, Mevludin & Tešnjak, Sejid, 2009. "Establishing an efficient regulatory mechanism—Prerequisite for successful energy activities regulation," Energy, Elsevier, vol. 34(2), pages 178-189.
    3. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    4. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    5. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    6. Meyer, Niels I., 2003. "European schemes for promoting renewables in liberalised markets," Energy Policy, Elsevier, vol. 31(7), pages 665-676, June.
    7. Amorim, F. & Vasconcelos, J. & Abreu, I.C. & Silva, P.P. & Martins, V., 2013. "How much room for a competitive electricity generation market in Portugal?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 103-118.
    8. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    9. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    10. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    11. Park, Haesun & Mjelde, James W. & Bessler, David A., 2006. "Price dynamics among U.S. electricity spot markets," Energy Economics, Elsevier, vol. 28(1), pages 81-101, January.
    12. Helen Higgs, 2009. "Modelling price and volatility inter-relationships in the Australian wholesale spot electricity markets," Discussion Papers in Economics economics:200904, Griffith University, Department of Accounting, Finance and Economics.
    13. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    14. De Vany, Arthur S. & Walls, W. David, 1999. "Cointegration analysis of spot electricity prices: insights on transmission efficiency in the western US," Energy Economics, Elsevier, vol. 21(5), pages 435-448, October.
    15. François Coppens & David Vivet, 2006. "The single European electricity market: A long road to convergence," Working Paper Document 84, National Bank of Belgium.
    16. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.
    17. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    18. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    19. Lester Hadsell, Achla Marathe and Hany A. Shawky, 2004. "Estimating the Volatility of Wholesale Electricity Spot Prices in the US," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 23-40.
    20. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    21. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    22. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    23. Higgs, Helen & Worthington, Andrew, 2008. "Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market," Energy Economics, Elsevier, vol. 30(6), pages 3172-3185, November.
    24. Keles, Dogan & Genoese, Massimo & Möst, Dominik & Ortlieb, Sebastian & Fichtner, Wolf, 2013. "A combined modeling approach for wind power feed-in and electricity spot prices," Energy Policy, Elsevier, vol. 59(C), pages 213-225.
    25. Higgs, Helen, 2009. "Modelling price and volatility inter-relationships in the Australian wholesale spot electricity markets," Energy Economics, Elsevier, vol. 31(5), pages 748-756, September.
    26. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    27. Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
    28. Carlos J. Pereira Freitas & Patrícia Pereira Da Silva, 2013. "Evaluation of dynamic pass-through of carbon prices into electricity prices - a cointegrated VECM analysis," International Journal of Public Policy, Inderscience Enterprises Ltd, vol. 9(1/2), pages 65-85.
    29. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    30. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    31. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    32. Bunn, Derek W. & Gianfreda, Angelica, 2010. "Integration and shock transmissions across European electricity forward markets," Energy Economics, Elsevier, vol. 32(2), pages 278-291, March.
    33. Karova, Rozeta, 2011. "Regional electricity markets in Europe: Focus on the Energy Community," Utilities Policy, Elsevier, vol. 19(2), pages 80-86, June.
    34. repec:qut:auncer:2012_5 is not listed on IDEAS
    35. repec:dau:papers:123456789/8180 is not listed on IDEAS
    36. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
    37. Worthington, Andrew & Kay-Spratley, Adam & Higgs, Helen, 2005. "Transmission of prices and price volatility in Australian electricity spot markets: a multivariate GARCH analysis," Energy Economics, Elsevier, vol. 27(2), pages 337-350, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannidis, Filippos & Kosmidou, Kyriaki & Makridou, Georgia & Andriosopoulos, Kostas, 2019. "Market design of an energy exchange: The case of Greece," Energy Policy, Elsevier, vol. 133(C).
    2. Bigerna, Simona, 2018. "Estimating temperature effects on the Italian electricity market," Energy Policy, Elsevier, vol. 118(C), pages 257-269.
    3. Thakur, Jagruti & Chakraborty, Basab, 2018. "Impact of increased solar penetration on bill savings of net metered residential consumers in India," Energy, Elsevier, vol. 162(C), pages 776-786.
    4. Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
    5. João Soares & Tiago Pinto & Fernando Lezama & Hugo Morais, 2018. "Survey on Complex Optimization and Simulation for the New Power Systems Paradigm," Complexity, Hindawi, vol. 2018, pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:114:y:2016:i:c:p:188-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.