IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v105y2017icp534-546.html
   My bibliography  Save this article

Modelling weather effects for impact analysis of residential time-of-use electricity pricing

Author

Listed:
  • Miller, Reid
  • Golab, Lukasz
  • Rosenberg, Catherine

Abstract

Analyzing the impact of pricing policies such as time-of-use (TOU) is challenging in the presence of confounding factors such as weather. Motivated by a lack of consensus and model selection details in prior work, we present a methodology for modelling the effect of weather on residential electricity demand. The best model is selected according to explanatory power, out-of-sample prediction accuracy, goodness of fit and interpretability. We then evaluate the effect of mandatory TOU pricing in a local distribution company in southwestern Ontario, Canada. We use a smart meter dataset of over 20,000 households which is particularly suited to our analysis: it contains data from the summer before and after the implementation of TOU pricing in November 2011, and all customers transitioned from tiered rates to TOU rates at the same time. We find that during the summer rate season, TOU pricing results in electricity conservation across all price periods. The average demand change during on-peak and mid-peak periods is −2.6% and −2.4% respectively. Changes during off-peak periods are not statistically significant. These TOU pricing effects are less pronounced compared to previous studies, underscoring the need for clear, reproducible impact analyses which include full details about the model selection process.

Suggested Citation

  • Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
  • Handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:534-546
    DOI: 10.1016/j.enpol.2017.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517301568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    2. Kenneth Train & Gil Mehrez, 1994. "Optional Time-of-Use Prices for Electricity: Econometric Analysis of Surplus and Pareto Impacts," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 263-283, Summer.
    3. Mountain, Dean C & Lawson, Evelyn L, 1992. "A Disaggregated Nonhomothetic Modeling of Responsiveness to Residential Time-of-Use Electricity Rates," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 181-207, February.
    4. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    5. Gasparrini, Antonio, 2011. "Distributed Lag Linear and Non-Linear Models in R: The Package dlnm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i08).
    6. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    7. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    8. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    9. Lifson, Dale P. & Miedema, Allen K., 1981. "A comparative analysis of time-of-use electricity rate effects: The Arizona experiment," Energy, Elsevier, vol. 6(5), pages 403-408.
    10. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bigerna, Simona, 2018. "Estimating temperature effects on the Italian electricity market," Energy Policy, Elsevier, vol. 118(C), pages 257-269.
    2. Cui, Weiwei & Li, Lin, 2018. "A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors," International Journal of Production Economics, Elsevier, vol. 201(C), pages 75-88.
    3. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    4. Blaschke, Maximilian J., 2022. "Dynamic pricing of electricity: Enabling demand response in domestic households," Energy Policy, Elsevier, vol. 164(C).
    5. Goulden, Murray & Spence, Alexa & Wardman, Jamie & Leygue, Caroline, 2018. "Differentiating ‘the user’ in DSR: Developing demand side response in advanced economies," Energy Policy, Elsevier, vol. 122(C), pages 176-185.
    6. Mosquera-López, Stephanía & Uribe, Jorge M. & Manotas-Duque, Diego F., 2018. "Effect of stopping hydroelectric power generation on the dynamics of electricity prices: An event study approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 456-467.
    7. Kaneko, Nanae & Fujimoto, Yu & Hayashi, Yasuhiro, 2022. "Sensitivity analysis of factors relevant to extreme imbalance between procurement plans and actual demand: Case study of the Japanese electricity market," Applied Energy, Elsevier, vol. 313(C).
    8. Kaneko, Nanae & Fujimoto, Yu & Kabe, Satoshi & Hayashida, Motonari & Hayashi, Yasuhiro, 2020. "Sparse modeling approach for identifying the dominant factors affecting situation-dependent hourly electricity demand," Applied Energy, Elsevier, vol. 265(C).
    9. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    2. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    3. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Ozhegov, Evgeniy & Popova, Evgeniya, 2017. "Demand for electricity and weather conditions: Nonparametric analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 55-73.
    5. Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
    6. Qiu, Yueming & Colson, Gregory & Wetzstein, Michael E., 2017. "Risk preference and adverse selection for participation in time-of-use electricity pricing programs," Resource and Energy Economics, Elsevier, vol. 47(C), pages 126-142.
    7. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    8. Kang, Jieyi & Reiner, David M., 2022. "What is the effect of weather on household electricity consumption? Empirical evidence from Ireland," Energy Economics, Elsevier, vol. 111(C).
    9. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    10. Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
    11. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    12. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    13. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    14. Ren'e Aid & Dylan Possamai & Nizar Touzi, 2018. "Optimal electricity demand response contracting with responsiveness incentives," Papers 1810.09063, arXiv.org, revised May 2019.
    15. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    16. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    17. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    18. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    19. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    20. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:534-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.