IDEAS home Printed from https://ideas.repec.org/p/enp/wpaper/eprg2113.html

Machine Learning on residential electricity consumption: Which households are more responsive to weather?

Author

Listed:
  • Jieyi Kang

    (Department of Land Economy, University of Cambridge)

  • David Reiner

    (EPRG, CJBS, University of Cambridge)

Abstract

The introduction of smart meters has created opportunities for both utilities and policymakers to understand residential electricity consumption in greater depth. Machine learning techniques have distinct advantages over traditional approaches in dealing with extremely large volumes of high-resolution usage data. We introduce a novel clustering method to detect household behaviour using different types of weather data as proxies. Based on this approach, we combine Irish smart meter and weather data to identify and characterize clear differences in the daily patterns between workdays and weekends in both summer and winter and investigate how households respond to changing weather patterns. We also examine the relationships between response groups and household demographic features using different statistical tests. We find the magnitude of the effect of occupancy-related variables in the clustering of weather sensitivity to be larger than incomerelated factors. This proposed new approach could be the basis of a classification model to identify households that are more responsive to different types of weather. Tariff design could benefit from such a model and enable specific schemes to be developed that would target weather-sensitive households and result in improved load management.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  • Handle: RePEc:enp:wpaper:eprg2113
    as

    Download full text from publisher

    File URL: https://www.jbs.cam.ac.uk/wp-content/uploads/2023/12/eprg-wp2113.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Tanveer Islam & Sartaj Aziz Turja & Md Tawfiqul Islam & Md Mominur Rahman & Ahsan Habib, 2025. "Forecasting Tetouan energy demand employing shift approach in machine-learning: complementing econometric insights," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(2), pages 1833-1860, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg2113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.