IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Understanding the spectrum of residential energy consumption: A quantile regression approach

  • Kaza, Nikhil
Registered author(s):

    Residential energy consumption accounts for 22% of the total energy consumption in the US. However, the impacts of local planning policies, such as increasing density and changing the housing type mix, on residential energy consumption are not well understood. Using Residential Energy Consumption Survey Data from the Energy Information Administration, quantile regression analysis was used to tease out the effects of various factors on entire distribution on the energy consumption spectrum instead of focusing on the conditional average. Results show that while housing size matters for space conditioning, housing type has a more nuanced impact. Self-reported neighborhood density does not seem to have any impact on energy use. Furthermore, the effects of these factors at the tails of the energy use distribution are substantially different than the average, in some cases differing by a factor of six. Some, not all, types of multifamily housing offer almost as much savings as reduction in housing area by 100Â m2, compared to single family houses.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V2W-50G75KD-5/2/7eb0c5f206c76074fe54c6687ef0a672
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Policy.

    Volume (Year): 38 (2010)
    Issue (Month): 11 (November)
    Pages: 6574-6585

    as
    in new window

    Handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6574-6585
    Contact details of provider: Web page: http://www.elsevier.com/locate/enpol

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Heckman, James J, 1979. "Sample Selection Bias as a Specification Error," Econometrica, Econometric Society, vol. 47(1), pages 153-61, January.
    3. Samuel R. Staley, 2008. "Missing the forest through the trees? Comment on Reid Ewing and Fang Rong's “the impact of urban form on U.S. residential energy use”," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 31-43, January.
    4. Clinton Andrews, 2008. "Greenhouse gas emissions along the rural-urban gradient," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 51(6), pages 847-870.
    5. Linden, Anna-Lisa & Carlsson-Kanyama, Annika & Eriksson, Bjorn, 2006. "Efficient and inefficient aspects of residential energy behaviour: What are the policy instruments for change?," Energy Policy, Elsevier, vol. 34(14), pages 1918-1927, September.
    6. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    7. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
    8. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6574-6585. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.