IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v38y2010i11p6574-6585.html
   My bibliography  Save this item

Understanding the spectrum of residential energy consumption: A quantile regression approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
  2. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
  3. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
  4. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
  5. Noriza Mohd Saad & Erna Farina Mohamed & Mohamad Taufik Mohd Arshad & Ahmad Lutfi Mohayiddin, 2023. "Electricity Tariff Changes and Consumer Sentiment on Household Consumption Expenditure in Malaysia," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 175-191, March.
  6. Djula Borozan & Mirjana Radman Funaric, 2018. "The Impact of Disaggregated Social Capital on Household Electricity Intensity," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 16(2), pages 189-207.
  7. Gholipour, Hassan F. & Arjomandi, Amir & Yam, Sharon, 2022. "Green property finance and CO2 emissions in the building industry," Global Finance Journal, Elsevier, vol. 51(C).
  8. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
  9. Giovanni Marin & Alessandro Palma, 2015. "Technology invention and diffusion in residential energy consumption. A stochastic frontier approach," SEEDS Working Papers 1415, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2015.
  10. Valenzuela, Carlos & Valencia, Alelhie & White, Steve & Jordan, Jeffrey A. & Cano, Stephanie & Keating, Jerome & Nagorski, John & Potter, Lloyd B., 2014. "An analysis of monthly household energy consumption among single-family residences in Texas, 2010," Energy Policy, Elsevier, vol. 69(C), pages 263-272.
  11. Bakaloglou, Salomé & Charlier, Dorothée, 2021. "The role of individual preferences in explaining the energy performance gap," Energy Economics, Elsevier, vol. 104(C).
  12. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
  13. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
  14. Niu, Shuwen & Jia, Yanqin & Ye, Liqiong & Dai, Runqi & Li, Na, 2016. "Does electricity consumption improve residential living status in less developed regions? An empirical analysis using the quantile regression approach," Energy, Elsevier, vol. 95(C), pages 550-560.
  15. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
  16. Nikhil Kaza & Roberto Quercia & Robert J. Sahadi, 2014. "Home energy efficiency and mortgage risks: an extended abstract," Community Development Innovation Review, Federal Reserve Bank of San Francisco, issue 01, pages 063-069.
  17. Liu, Xue & Ding, Yong & Tang, Hao & Fan, Lingxiao & Lv, Jie, 2022. "Investigating the effects of key drivers on energy consumption of nonresidential buildings: A data-driven approach integrating regularization and quantile regression," Energy, Elsevier, vol. 244(PA).
  18. Elizabeth Hewitt & Yiyi Wang, 2020. "Understanding the Drivers of National-Level Energy Audit Behavior: Demographics and Socioeconomic Characteristics," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
  19. Kesriklioğlu, Esma & Oktay, Erkan & Karaaslan, Abdulkerim, 2023. "Predicting total household energy expenditures using ensemble learning methods," Energy, Elsevier, vol. 276(C).
  20. Urom, Christian & Ndubuisi, Gideon & Guesmi, Khaled & Benkraien, Ramzi, 2022. "Quantile co-movement and dependence between energy-focused sectors and artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
  21. Misbah Aslam & Eatzaz Ahmad, 2018. "Impact of Ageing and Generational Effects on Household Energy Consumption Behavior: Evidence from Pakistan," Energies, MDPI, vol. 11(8), pages 1-20, August.
  22. Kang, J. & Reiner, D., 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Cambridge Working Papers in Economics 2142, Faculty of Economics, University of Cambridge.
  23. Lévy, Jean-Pierre & Belaïd, Fateh, 2018. "The determinants of domestic energy consumption in France: Energy modes, habitat, households and life cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2104-2114.
  24. Raihanian Mashhadi, Ardeshir & Behdad, Sara, 2018. "Discriminant effects of consumer electronics use-phase attributes on household energy prediction," Energy Policy, Elsevier, vol. 118(C), pages 346-355.
  25. Estiri, Hossein, 2015. "The indirect role of households in shaping US residential energy demand patterns," Energy Policy, Elsevier, vol. 86(C), pages 585-594.
  26. Hendrik Schmitz & Reinhard Madlener, 2020. "Heterogeneity in price responsiveness for residential space heating in Germany," Empirical Economics, Springer, vol. 59(5), pages 2255-2281, November.
  27. Rowangould, Dana & Eldridge, Melody & Niemeier, Deb, 2013. "Incorporating regional growth into forecasts of greenhouse gas emissions from project-level residential and commercial development," Energy Policy, Elsevier, vol. 62(C), pages 1288-1300.
  28. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
  29. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
  30. Cheng, Fenfen & Yang, Shanlin & Zhou, Kaile, 2020. "Quantile partial adjustment model with application to predicting energy demand in China," Energy, Elsevier, vol. 191(C).
  31. Borozan, Djula, 2019. "Unveiling the heterogeneous effect of energy taxes and income on residential energy consumption," Energy Policy, Elsevier, vol. 129(C), pages 13-22.
  32. Clune, Stephen & Morrissey, John & Moore, Trivess, 2012. "Size matters: House size and thermal efficiency as policy strategies to reduce net emissions of new developments," Energy Policy, Elsevier, vol. 48(C), pages 657-667.
  33. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
  34. Naiming Xie & Alan Pearman, 2014. "Forecasting energy consumption in China following instigation of an energy-saving policy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 639-659, November.
  35. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2019. "Heterogeneity in German Residential Electricity Consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 131(C), pages 370-379.
  36. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
  37. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
  38. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
  39. van den Brom, Paula & Hansen, Anders Rhiger & Gram-Hanssen, Kirsten & Meijer, Arjen & Visscher, Henk, 2019. "Variances in residential heating consumption – Importance of building characteristics and occupants analysed by movers and stayers," Applied Energy, Elsevier, vol. 250(C), pages 713-728.
  40. Yao, Xi-Long & Liu, Yang & Yan, Xiao, 2014. "A quantile approach to assess the effectiveness of the subsidy policy for energy-efficient home appliances: Evidence from Rizhao, China," Energy Policy, Elsevier, vol. 73(C), pages 512-518.
  41. Do, Linh Phuong Catherine & Lyócsa, Štefan & Molnár, Peter, 2021. "Residual electricity demand: An empirical investigation," Applied Energy, Elsevier, vol. 283(C).
  42. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
  43. Belaïd, Fateh, 2016. "Understanding the spectrum of domestic energy consumption: Empirical evidence from France," Energy Policy, Elsevier, vol. 92(C), pages 220-233.
  44. Wang, Yuanping & Hou, Lingchun & Hu, Lang & Cai, Weiguang & Wang, Lin & Dai, Cuilian & Chen, Juntao, 2023. "How family structure type affects household energy consumption: A heterogeneous study based on Chinese household evidence," Energy, Elsevier, vol. 284(C).
  45. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
  46. Wang, Xia & Fang, Yuan & Cai, Weiguang & Ding, Chao & Xie, Yupei, 2022. "Heating demand with heterogeneity in residential households in the hot summer and cold winter climate zone in China -A quantile regression approach," Energy, Elsevier, vol. 247(C).
  47. Lester, T. William, 2013. "Dedicating new real estate transfer taxes for energy efficiency: A revenue option for scaling up Green Retrofit Programs," Energy Policy, Elsevier, vol. 62(C), pages 809-820.
  48. Quan, Steven Jige & Li, Chaosu, 2021. "Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  49. Rhodes, Joshua D. & Upshaw, Charles R. & Harris, Chioke B. & Meehan, Colin M. & Walling, David A. & Navrátil, Paul A. & Beck, Ariane L. & Nagasawa, Kazunori & Fares, Robert L. & Cole, Wesley J. & Kuma, 2014. "Experimental and data collection methods for a large-scale smart grid deployment: Methods and first results," Energy, Elsevier, vol. 65(C), pages 462-471.
  50. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
  51. Yawale, Satish Kumar & Hanaoka, Tatsuya & Kapshe, Manmohan & Pandey, Rahul, 2023. "End-use energy projections: Future regional disparity and energy poverty at the household level in rural and urban areas of India," Energy Policy, Elsevier, vol. 182(C).
  52. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
  53. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
  54. Houshmand E. MASOUMI, 2014. "Urban Sprawl In Mid-Sized Cities Of Mena, Evidence From Yazd And Kashan In Central Iran," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(2), pages 25-41, June.
  55. Tso, Geoffrey K.F. & Guan, Jingjing, 2014. "A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption," Energy, Elsevier, vol. 66(C), pages 722-731.
  56. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
  57. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
  58. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
  59. Wang, Xia & Ding, Chao & Zhou, Mao & Cai, Weiguang & Ma, Xianrui & Yuan, Jiachen, 2023. "Assessment of space heating consumption efficiency based on a household survey in the hot summer and cold winter climate zone in China," Energy, Elsevier, vol. 274(C).
  60. Yekang Ko & John D Radke, 2014. "The Effect of Urban Form and Residential Cooling Energy Use in Sacramento, California," Environment and Planning B, , vol. 41(4), pages 573-593, August.
  61. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
  62. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
  63. Yen-Jong Chen & Rodney H Matsuoka & Tzu-Min Liang, 2018. "Urban form, building characteristics, and residential electricity consumption: A case study in Tainan City," Environment and Planning B, , vol. 45(5), pages 933-952, September.
  64. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an urban energy demand forecasting system to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 110(C), pages 304-317.
  65. Fanying Zheng & Fu Gu & Wujie Zhang & Jianfeng Guo, 2019. "Is Bicycle Sharing an Environmental Practice? Evidence from a Life Cycle Assessment Based on Behavioral Surveys," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
  66. Biying, Yu & Zhang, Junyi & Fujiwara, Akimasa, 2012. "Analysis of the residential location choice and household energy consumption behavior by incorporating multiple self-selection effects," Energy Policy, Elsevier, vol. 46(C), pages 319-334.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.