IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925000741.html
   My bibliography  Save this article

Nonlinearity in the relationships between urban form and residential energy use intensity

Author

Listed:
  • Quan, Steven Jige
  • Xue, Yang
  • Li, Chaosu

Abstract

The influence of urban form on building energy use is a crucial issue for energy-efficient urban planning and management. Nevertheless, traditional simulation and statistical methods often struggle to accurately represent and analyze this influence, which typically involves complex and nonlinear relationships. Conversely, while emerging machine learning studies excel in modeling such complexities, they often prioritize prediction over interpretation. This study seeks to deal with these limitations by employing gradient boosting decision trees (GBDT), along with interpretability analysis to reveal the nonlinear relationships between residential energy use intensity and various influential factors in Chicago, with a particular focus on urban form measures. Through a rigorous training procedure that accounts for the effects of randomness in hyperparameter tuning, the study develops and interprets final GBDT models using the feature importance and partial dependence plot (PDP) analyses. The results indicate that urban form factors have important predictive power for annual electricity use intensity, summer electricity use intensity, and winter gas use intensity. The PDPs reveal three distinct patterns in these factors: nonvisible, smooth, and complex nonlinear relationships. Notably, tree canopy coverage exhibits a smooth nonlinear relationship with annual electricity use intensity, whereas building density presents a complex nonlinear relationship. Additionally, the study develops traditional regression models using the same dataset and compares these with the GBDT models to highlight differences in how each approach assesses the importance of variables and complex relationships. Although machine learning models generally achieve higher accuracy, this study suggests they should primarily serve as exploratory data analysis rather than definitive tests of the relationships, given the approximative nature of the interpretability analysis. The findings from this study are useful in developing planning strategies and management policies to improve residential energy efficiency in urban areas.

Suggested Citation

  • Quan, Steven Jige & Xue, Yang & Li, Chaosu, 2025. "Nonlinearity in the relationships between urban form and residential energy use intensity," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000741
    DOI: 10.1016/j.apenergy.2025.125344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
    2. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    3. Robinson, Caleb & Dilkina, Bistra & Hubbs, Jeffrey & Zhang, Wenwen & Guhathakurta, Subhrajit & Brown, Marilyn A. & Pendyala, Ram M., 2017. "Machine learning approaches for estimating commercial building energy consumption," Applied Energy, Elsevier, vol. 208(C), pages 889-904.
    4. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    5. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    6. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    7. Quan, Steven Jige & Li, Chaosu, 2021. "Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    9. Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
    10. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    11. Kaza, Nikhil, 2010. "Understanding the spectrum of residential energy consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 38(11), pages 6574-6585, November.
    12. Jihoon Min & Zeke Hausfather & Qi Feng Lin, 2010. "A High‐Resolution Statistical Model of Residential Energy End Use Characteristics for the United States," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 791-807, October.
    13. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    14. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    15. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    16. Yang, Linchuan & Ao, Yibin & Ke, Jintao & Lu, Yi & Liang, Yuan, 2021. "To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults," Journal of Transport Geography, Elsevier, vol. 94(C).
    17. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Estiri, Hossein, 2015. "The indirect role of households in shaping US residential energy demand patterns," Energy Policy, Elsevier, vol. 86(C), pages 585-594.
    19. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    20. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    21. Jovanović, Saša & Savić, Slobodan & Bojić, Milorad & Djordjević, Zorica & Nikolić, Danijela, 2015. "The impact of the mean daily air temperature change on electricity consumption," Energy, Elsevier, vol. 88(C), pages 604-609.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quan, Steven Jige & Li, Chaosu, 2021. "Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
    4. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Liu, Xue & Ding, Yong & Tang, Hao & Fan, Lingxiao & Lv, Jie, 2022. "Investigating the effects of key drivers on energy consumption of nonresidential buildings: A data-driven approach integrating regularization and quantile regression," Energy, Elsevier, vol. 244(PA).
    7. Peplinski, McKenna & Dilkina, Bistra & Chen, Mo & Silva, Sam J. & Ban-Weiss, George A. & Sanders, Kelly T., 2024. "A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building characteristics, and socioeconomic datasets," Applied Energy, Elsevier, vol. 357(C).
    8. Belaïd, Fateh, 2016. "Understanding the spectrum of domestic energy consumption: Empirical evidence from France," Energy Policy, Elsevier, vol. 92(C), pages 220-233.
    9. Wang, Wei & Liu, Ke & Zhang, Muxing & Shen, Yuchi & Jing, Rui & Xu, Xiaodong, 2021. "From simulation to data-driven approach: A framework of integrating urban morphology to low-energy urban design," Renewable Energy, Elsevier, vol. 179(C), pages 2016-2035.
    10. Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
    11. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    12. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    13. Gholipour, Hassan F. & Arjomandi, Amir & Yam, Sharon, 2022. "Green property finance and CO2 emissions in the building industry," Global Finance Journal, Elsevier, vol. 51(C).
    14. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    15. Yen-Jong Chen & Rodney H Matsuoka & Tzu-Min Liang, 2018. "Urban form, building characteristics, and residential electricity consumption: A case study in Tainan City," Environment and Planning B, , vol. 45(5), pages 933-952, September.
    16. Kettani, Maryème & Sanin, Maria Eugenia, 2024. "Energy consumption and energy poverty in Morocco," Energy Policy, Elsevier, vol. 185(C).
    17. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    18. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    19. Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).
    20. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.