IDEAS home Printed from
   My bibliography  Save this article

Developing a common approach for classifying building stock energy models


  • Langevin, J.
  • Reyna, J.L.
  • Ebrahimigharehbaghi, S.
  • Sandberg, N.
  • Fennell, P.
  • Nägeli, C.
  • Laverge, J.
  • Delghust, M.
  • Mata, É.
  • Van Hove, M.
  • Webster, J.
  • Federico, F.
  • Jakob, M.
  • Camarasa, C.


Buildings contribute 40% of global greenhouse gas emissions; therefore, strategies that can substantially reduce emissions from the building stock are key components of broader efforts to mitigate climate change and achieve sustainable development goals. Models that represent the energy use of the building stock at scale under various scenarios of technology deployment have become essential tools for the development and assessment of such strategies. Within the past decade, the capabilities of building stock energy models have improved considerably, while model transferability and sharing has increased. Given these advancements, a new scheme for classifying building stock energy models is needed to facilitate communication of modeling approaches and the handling of important model dimensions. In this article, we present a new building stock energy model classification framework that leverages international modeling expertise from the participants of the International Energy Agency's Annex 70 on Building Energy Epidemiology. Drawing from existing classification studies, we propose a multi-layer quadrant scheme that classifies modeling techniques by their design (top-down or bottom-up) and degree of transparency (black-box or white-box); hybrid techniques are also addressed. The quadrant scheme is unique from previous classification approaches in its non-hierarchical organization, coverage of and ability to incorporate emerging modeling techniques, and treatment of additional modeling dimensions. The new classification framework will be complemented by a reporting protocol and online registry of existing models as part of ongoing work in Annex 70 to increase the interpretability and utility of building stock energy models for energy policy making.

Suggested Citation

  • Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305645
    DOI: 10.1016/j.rser.2020.110276

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mark Jaccard, 2009. "Combining Top Down and Bottom Up in Energy Economy Models," Chapters, in: Joanne Evans & Lester C. Hunt (ed.), International Handbook on the Economics of Energy, chapter 13, Edward Elgar Publishing.
    2. Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
    3. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    4. Cayla, Jean-Michel & Maïzi, Nadia, 2015. "Integrating household behavior and heterogeneity into the TIMES-Households model," Applied Energy, Elsevier, vol. 139(C), pages 56-67.
    5. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    6. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2012. "Estimation of elasticity price of electricity with incomplete information," Energy Economics, Elsevier, vol. 34(3), pages 627-633.
    7. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    8. Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    9. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    10. Dilaver, Zafer & Hunt, Lester C, 2011. "Modelling and forecasting Turkish residential electricity demand," Energy Policy, Elsevier, vol. 39(6), pages 3117-3127, June.
    11. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    12. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    13. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    14. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    15. Sandels, C. & Widén, J. & Nordström, L., 2014. "Forecasting household consumer electricity load profiles with a combined physical and behavioral approach," Applied Energy, Elsevier, vol. 131(C), pages 267-278.
    16. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
    17. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    18. Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
    19. Lindberg, K.B. & Bakker, S.J. & Sartori, I., 2019. "Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts," Utilities Policy, Elsevier, vol. 58(C), pages 63-88.
    20. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    21. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    22. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    23. Eoin Ó Broin & Jonas Nässén & Filip Johnsson, 2015. "The influence of price and non-price effects on demand for heating in the EU residential sector," Post-Print hal-01219278, HAL.
    24. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "The influence of price and non-price effects on demand for heating in the EU residential sector," Energy, Elsevier, vol. 81(C), pages 146-158.
    25. Fournier, Eric D. & Federico, Felicia & Porse, Erik & Pincetl, Stephanie, 2019. "Effects of building size growth on residential energy efficiency and conservation in California," Applied Energy, Elsevier, vol. 240(C), pages 446-452.
    26. Millward-Hopkins, J.T. & Tomlin, A.S. & Ma, L. & Ingham, D.B. & Pourkashanian, M., 2013. "Assessing the potential of urban wind energy in a major UK city using an analytical model," Renewable Energy, Elsevier, vol. 60(C), pages 701-710.
    27. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    28. Limpens, Gauthier & Moret, Stefano & Jeanmart, Hervé & Maréchal, Francois, 2019. "EnergyScope TD: A novel open-source model for regional energy systems," Applied Energy, Elsevier, vol. 255(C).
    29. Zhang, Wenwen & Robinson, Caleb & Guhathakurta, Subhrajit & Garikapati, Venu M. & Dilkina, Bistra & Brown, Marilyn A. & Pendyala, Ram M., 2018. "Estimating residential energy consumption in metropolitan areas: A microsimulation approach," Energy, Elsevier, vol. 155(C), pages 162-173.
    30. Hargreaves, Anthony & Cheng, Vicky & Deshmukh, Sandip & Leach, Matthew & Steemers, Koen, 2017. "Forecasting how residential urban form affects the regional carbon savings and costs of retrofitting and decentralized energy supply," Applied Energy, Elsevier, vol. 186(P3), pages 549-561.
    31. Wilkerson, Jordan T. & Cullenward, Danny & Davidian, Danielle & Weyant, John P., 2013. "End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors," Energy Economics, Elsevier, vol. 40(C), pages 773-784.
    32. Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
    33. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    34. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    35. Kurt Kratena & Ina Meyer & Michael Wüger, 2009. "The Impact of Technological Change and Lifestyles on the Energy Demand of Households. A Combination of Aggregate and Individual Household Analysis," WIFO Working Papers 334, WIFO.
    36. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
    37. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    38. Ouyang, Jinlong & Ge, Jian & Hokao, Kazunori, 2009. "Economic analysis of energy-saving renovation measures for urban existing residential buildings in China based on thermal simulation and site investigation," Energy Policy, Elsevier, vol. 37(1), pages 140-149, January.
    39. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
    40. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.
    41. Pourazarm, Elham & Cooray, Arusha, 2013. "Estimating and forecasting residential electricity demand in Iran," Economic Modelling, Elsevier, vol. 35(C), pages 546-558.
    42. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    43. Ó Broin, Eoin & Mata, Érika & Göransson, Anders & Johnsson, Filip, 2013. "The effect of improved efficiency on energy savings in EU-27 buildings," Energy, Elsevier, vol. 57(C), pages 134-148.
    44. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    45. Soren Leth-Petersen, 2002. "Micro Econometric Modelling of Household Energy Use: Testing for Dependence between Demand for Electricity and Natural Gas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 57-84.
    46. Tooke, Thoreau Rory & van der Laan, Michael & Coops, Nicholas C., 2014. "Mapping demand for residential building thermal energy services using airborne LiDAR," Applied Energy, Elsevier, vol. 127(C), pages 125-134.
    47. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    48. Gooding, James & Crook, Rolf & Tomlin, Alison S., 2015. "Modelling of roof geometries from low-resolution LiDAR data for city-scale solar energy applications using a neighbouring buildings method," Applied Energy, Elsevier, vol. 148(C), pages 93-104.
    49. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    50. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    51. van Sluisveld, Mariësse A.E. & Martínez, Sara Herreras & Daioglou, Vassilis & van Vuuren, Detlef P., 2016. "Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 309-319.
    52. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    53. Magnus Moglia & Aneta Podkalicka & James McGregor, 2018. "An Agent-Based Model of Residential Energy Efficiency Adoption," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(3), pages 1-3.
    54. Tian, Wei & Liu, Yunliang & Heo, Yeonsook & Yan, Da & Li, Zhanyong & An, Jingjing & Yang, Song, 2016. "Relative importance of factors influencing building energy in urban environment," Energy, Elsevier, vol. 111(C), pages 237-250.
    55. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    56. Mata, Érika & Kalagasidis, Angela Sasic & Johnsson, Filip, 2018. "Contributions of building retrofitting in five member states to EU targets for energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 759-774.
    57. Nägeli, Claudio & Jakob, Martin & Catenazzi, Giacomo & Ostermeyer, York, 2020. "Policies to decarbonize the Swiss residential building stock: An agent-based building stock modeling assessment," Energy Policy, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. White, Philip R. & Rhodes, Joshua D. & Wilson, Eric J.H. & Webber, Michael E., 2021. "Quantifying the impact of residential space heating electrification on the Texas electric grid," Applied Energy, Elsevier, vol. 298(C).
    2. Attia, Shady & Canonge, Théophile & Popineau, Mathieu & Cuchet, Mathilde, 2022. "Developing a benchmark model for renovated, nearly zero-energy, terraced dwellings," Applied Energy, Elsevier, vol. 306(PB).
    3. Sandberg, Nina Holck & Næss, Jan Sandstad & Brattebø, Helge & Andresen, Inger & Gustavsen, Arild, 2021. "Large potentials for energy saving and greenhouse gas emission reductions from large-scale deployment of zero emission building technologies in a national building stock," Energy Policy, Elsevier, vol. 152(C).
    4. Shimoda, Yoshiyuki & Sugiyama, Minami & Nishimoto, Ryuya & Momonoki, Takashi, 2021. "Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050," Applied Energy, Elsevier, vol. 303(C).
    5. Walter, Travis & Mathew, Paul, 2022. "City-level impacts of building tune-ups: Findings from Seattle's building tune-ups program," Energy Policy, Elsevier, vol. 168(C).
    6. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    7. Chen, Jianli & Adhikari, Rajendra & Wilson, Eric & Robertson, Joseph & Fontanini, Anthony & Polly, Ben & Olawale, Opeoluwa, 2022. "Stochastic simulation of occupant-driven energy use in a bottom-up residential building stock model," Applied Energy, Elsevier, vol. 325(C).
    8. Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
    9. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    2. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    5. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    7. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Yang, Xining & Hu, Mingming & Heeren, Niko & Zhang, Chunbo & Verhagen, Teun & Tukker, Arnold & Steubing, Bernhard, 2020. "A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation," Applied Energy, Elsevier, vol. 280(C).
    9. Wang, Wei & Hong, Tianzhen & Xu, Xiaodong & Chen, Jiayu & Liu, Ziang & Xu, Ning, 2019. "Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm," Applied Energy, Elsevier, vol. 248(C), pages 217-230.
    10. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    11. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    12. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    14. Xiao, Tong & Xu, Peng & He, Ruikai & Sha, Huajing, 2022. "Status quo and opportunities for building energy prediction in limited data Context—Overview from a competition," Applied Energy, Elsevier, vol. 305(C).
    15. Zhang, Yuhang & Zhang, Yi & Yi Zhang, & Zhang, Chengxu, 2022. "Effect of physical, environmental, and social factors on prediction of building energy consumption for public buildings based on real-world big data," Energy, Elsevier, vol. 261(PB).
    16. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    17. Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
    18. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    19. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    20. Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.