IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032120309461.html
   My bibliography  Save this article

Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies

Author

Listed:
  • Quan, Steven Jige
  • Li, Chaosu

Abstract

The relationship between urban form and building energy use has received increasing attention in recent literature. However, findings from existing studies are diverse and sometimes contradictory, and this issue has not been extensively discussed in previous reviews. This paper provides a systematic review of studies on the relationship between urban form and building energy use based on the proposed classification framework. The classification framework categorizes existing studies by their measure definitions, mechanism assumptions, and methodologies. Aside from these conceptual differences, the differences in site contexts of the selected cases are also reviewed. On the basis of the review results, this paper summarizes the consideration of mechanisms by pathway maps and provides an updated understanding of the three main debates in this field. These debates concern the magnitude of influence, impact of densification, and preference of typology. This review also reveals many challenges in this field, including the limited measures of urban form and building energy use, lack of understanding of pathway contributions, and uncertainty and validity issues of tools and models. In addition, future research directions are provided to inform urban planning and policy making decisions for sustainable urban development.

Suggested Citation

  • Quan, Steven Jige & Li, Chaosu, 2021. "Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120309461
    DOI: 10.1016/j.rser.2020.110662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120309461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young-Eun Woo & Gi-Hyoug Cho, 2018. "Impact of the Surrounding Built Environment on Energy Consumption in Mixed-Use Building," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    2. Han, Yilong & Taylor, John E. & Pisello, Anna Laura, 2017. "Exploring mutual shading and mutual reflection inter-building effects on building energy performance," Applied Energy, Elsevier, vol. 185(P2), pages 1556-1564.
    3. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    4. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    5. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    6. Kaza, Nikhil, 2010. "Understanding the spectrum of residential energy consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 38(11), pages 6574-6585, November.
    7. Sanaieian, Haniyeh & Tenpierik, Martin & Linden, Kees van den & Mehdizadeh Seraj, Fatemeh & Mofidi Shemrani, Seyed Majid, 2014. "Review of the impact of urban block form on thermal performance, solar access and ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 551-560.
    8. Jihoon Min & Zeke Hausfather & Qi Feng Lin, 2010. "A High‐Resolution Statistical Model of Residential Energy End Use Characteristics for the United States," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 791-807, October.
    9. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    10. Anderson, John E. & Wulfhorst, Gebhard & Lang, Werner, 2015. "Energy analysis of the built environment—A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 149-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    2. Cihan Turhan & Ali Serdar Atalay & Gulden Gokcen Akkurt, 2023. "An Integrated Decision-Making Framework for Mitigating the Impact of Urban Heat Islands on Energy Consumption and Thermal Comfort of Residential Buildings," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    3. Avichal Malhotra & Simon Raming & Jérôme Frisch & Christoph van Treeck, 2021. "Open-Source Tool for Transforming CityGML Levels of Detail," Energies, MDPI, vol. 14(24), pages 1-26, December.
    4. Estefanía Montes-Villalva & Lucía Pereira-Ruchansky & Beatriz Piderit-Moreno & Alexis Pérez-Fargallo, 2022. "Impact of Urban Re-Densification on Indoor Lighting Demand and Energy Poverty on the Equator, in the City of Quito," Sustainability, MDPI, vol. 14(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belaïd, Fateh, 2016. "Understanding the spectrum of domestic energy consumption: Empirical evidence from France," Energy Policy, Elsevier, vol. 92(C), pages 220-233.
    2. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    3. Yen-Jong Chen & Rodney H Matsuoka & Tzu-Min Liang, 2018. "Urban form, building characteristics, and residential electricity consumption: A case study in Tainan City," Environment and Planning B, , vol. 45(5), pages 933-952, September.
    4. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    5. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    6. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    8. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    9. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Lévy, Jean-Pierre & Belaïd, Fateh, 2018. "The determinants of domestic energy consumption in France: Energy modes, habitat, households and life cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2104-2114.
    11. Valenzuela, Carlos & Valencia, Alelhie & White, Steve & Jordan, Jeffrey A. & Cano, Stephanie & Keating, Jerome & Nagorski, John & Potter, Lloyd B., 2014. "An analysis of monthly household energy consumption among single-family residences in Texas, 2010," Energy Policy, Elsevier, vol. 69(C), pages 263-272.
    12. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    13. Raissi, Shiva & Reames, Tony G., 2020. "“If we had a little more flexibility.” perceptions of programmatic challenges and opportunities implementing government-funded low-income energy efficiency programs," Energy Policy, Elsevier, vol. 147(C).
    14. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    15. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    16. Gholipour, Hassan F. & Arjomandi, Amir & Yam, Sharon, 2022. "Green property finance and CO2 emissions in the building industry," Global Finance Journal, Elsevier, vol. 51(C).
    17. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
    18. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
    19. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    20. Raihanian Mashhadi, Ardeshir & Behdad, Sara, 2018. "Discriminant effects of consumer electronics use-phase attributes on household energy prediction," Energy Policy, Elsevier, vol. 118(C), pages 346-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120309461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.