IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p409-d1318888.html
   My bibliography  Save this article

Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review

Author

Listed:
  • João Monteiro

    (Research Centre for Territory, Transports and Environment (CITTA), 4200-465 Porto, Portugal)

  • Nuno Sousa

    (Institute for Systems Engineering and Computers of Coimbra (INESCC), 3030-790 Coimbra, Portugal
    Department of Sciences and Technology, Universidade Aberta, 1269-001 Lisbon, Portugal)

  • João Coutinho-Rodrigues

    (Institute for Systems Engineering and Computers of Coimbra (INESCC), 3030-790 Coimbra, Portugal
    Department of Civil Engineering, University of Coimbra, 3004-531 Coimbra, Portugal)

  • Eduardo Natividade-Jesus

    (Institute for Systems Engineering and Computers of Coimbra (INESCC), 3030-790 Coimbra, Portugal
    Department of Civil Engineering, Polytechnic Institute of Coimbra, 3045-093 Coimbra, Portugal)

Abstract

This article reviews the critical issues surrounding the development of sustainable urban environments, focusing on the impact of transport and urban form on energy consumption and greenhouse gas emissions. The aim is to provide an overview of the state-of-the-art on the subject and to unravel what directions the literature suggests for sustainable urban planning. Current research and practices are synthesized, highlighting the interdependence of urban design and transportation systems in achieving sustainability goals. Important dimensions and practices of city planning and transport policies are explored, including urban form, urban sprawl, mixed land use, densification and infill, and urban public spaces, and how these directly influence transport dynamics, including modal choices and energy consumption. Innovative approaches in urban planning, such as transit-oriented development, and technological advancements, such as electric mobility, are also examined and their potential roles in sustainable urban transport. The conclusion underscores the urgency of adopting holistic and adaptable strategies to foster sustainable urban environments, calling for concerted efforts from policymakers, urban planners, and communities. Awareness of the conclusions can help municipal decision-makers in planning their cities for a sustainable future. Finally, the authors analyze important directions for future research and practical applications towards developing cities that are environmentally sound, socially equitable, and economically viable.

Suggested Citation

  • João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:409-:d:1318888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michiel Fremouw & Annamaria Bagaini & Paolo De Pascali, 2020. "Energy Potential Mapping: Open Data in Support of Urban Transition Planning," Energies, MDPI, vol. 13(5), pages 1-15, March.
    2. Mark R. Stevens, 2017. "Does Compact Development Make People Drive Less?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 7-18, January.
    3. Deborah L. Bleviss, 2021. "Transportation is critical to reducing greenhouse gas emissions in the United States," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(2), March.
    4. Ali Enes Dingil & Joerg Schweizer & Federico Rupi & Zaneta Stasiskiene, 2019. "Updated Models of Passenger Transport Related Energy Consumption of Urban Areas," Sustainability, MDPI, vol. 11(15), pages 1-16, July.
    5. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    6. Job Taminiau & John Byrne & Jongkyu Kim & Min‐whi Kim & Jeongseok Seo, 2021. "Infrastructure‐scale sustainable energy planning in the cityscape: Transforming urban energy metabolism in East Asia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    7. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    8. Karan, Ebrahim & Mohammadpour, Atefeh & Asadi, Somayeh, 2016. "Integrating building and transportation energy use to design a comprehensive greenhouse gas mitigation strategy," Applied Energy, Elsevier, vol. 165(C), pages 234-243.
    9. Paola Marrone & Federico Fiume & Antonino Laudani & Ilaria Montella & Martina Palermo & Francesco Riganti Fulginei, 2023. "Distributed Energy Systems: Constraints and Opportunities in Urban Environments," Energies, MDPI, vol. 16(6), pages 1-27, March.
    10. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. João Monteiro & Ana Clara Carrilho & Nuno Sousa & Leise Kelli de Oliveira & Eduardo Natividade-Jesus & João Coutinho-Rodrigues, 2023. "Do We Live Where It Is Pleasant? Correlates of Perceived Pleasantness with Socioeconomic Variables," Land, MDPI, vol. 12(4), pages 1-20, April.
    12. Oliwia Pietrzak & Krystian Pietrzak, 2021. "The Economic Effects of Electromobility in Sustainable Urban Public Transport," Energies, MDPI, vol. 14(4), pages 1-28, February.
    13. Yunfei Li & Sebastian Schubert & Jürgen P. Kropp & Diego Rybski, 2020. "On the influence of density and morphology on the Urban Heat Island intensity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    14. Brandt, Leslie & Derby Lewis, Abigail & Fahey, Robert & Scott, Lydia & Darling, Lindsay & Swanston, Chris, 2016. "A framework for adapting urban forests to climate change," Environmental Science & Policy, Elsevier, vol. 66(C), pages 393-402.
    15. Michail Tsangas & Iliana Papamichael & Antonis A. Zorpas, 2023. "Sustainable Energy Planning in a New Situation," Energies, MDPI, vol. 16(4), pages 1-12, February.
    16. Mendiola, Lorea & González, Pilar & Cebollada, Àngel, 2014. "The link between urban development and the modal split in commuting: the case of Biscay," Journal of Transport Geography, Elsevier, vol. 37(C), pages 1-9.
    17. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
    18. Carlos Moreno & Zaheer Allam & Didier Chabaud & Catherine Gall & Florent Pratlong, 2021. "Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities," Post-Print hal-03549665, HAL.
    19. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    20. Yuanyuan Ma & Yunzi Yang & Hongzan Jiao, 2021. "Exploring the Impact of Urban Built Environment on Public Emotions Based on Social Media Data: A Case Study of Wuhan," Land, MDPI, vol. 10(9), pages 1-24, September.
    21. Gyo-Eon Shim & Sung-Mo Rhee & Kun-Hyuck Ahn & Sung-Bong Chung, 2006. "The relationship between the characteristics of transportation energy consumption and urban form," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 351-367, June.
    22. Litman, Todd, 2005. "Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies," Transport Policy, Elsevier, vol. 12(2), pages 121-129, March.
    23. Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.
    24. Mark R. Stevens, 2017. "Response to Commentaries on “Does Compact Development Make People Drive Less?”," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(2), pages 151-158, April.
    25. Hadi Zamanifard & Tooran Alizadeh & Caryl Bosman & Eddo Coiacetto, 2019. "Measuring experiential qualities of urban public spaces: users’ perspective," Journal of Urban Design, Taylor & Francis Journals, vol. 24(3), pages 340-364, May.
    26. Quan, Steven Jige & Li, Chaosu, 2021. "Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jiong & Ma, Shoufeng & Zou, Hongyang & Du, Huibin, 2023. "How does population agglomeration influence the adoption of new energy vehicles? Evidence from 290 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    2. Guanwei Zhao & Zeyu Pan & Muzhuang Yang, 2022. "Marginal Effects and Spatial Variations of the Impact of the Built Environment on Taxis’ Pollutant Emissions in Chengdu, China," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    3. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    4. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    5. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    6. Li, Xiaomeng & Neal, Zachary P., 2022. "Are larger cities more central in urban networks: A meta-analysis," OSF Preprints y3s69, Center for Open Science.
    7. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    8. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    9. Bindong Sun & Rui Guo & Chun Yin, 2023. "Inequity on suburban campuses: University students disadvantaged in self‐improvement travel," Growth and Change, Wiley Blackwell, vol. 54(2), pages 404-420, June.
    10. Chun Yin & Bindong Sun, 2020. "Does Compact Built Environment Help to Reduce Obesity? Influence of Population Density on Waist–Hip Ratio in Chinese Cities," IJERPH, MDPI, vol. 17(21), pages 1-16, October.
    11. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    12. Nazari, Fatemeh & Mohammadian, Abolfazl (Kouros), 2023. "Modeling vehicle-miles of travel accounting for latent heterogeneity," Transport Policy, Elsevier, vol. 133(C), pages 45-53.
    13. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    14. Boeing, Geoff & Riggs, William, 2022. "Converting One-Way Streets to Two-Way Streets to Improve Transportation Network Efficiency and Reduce Vehicle Distance Traveled," SocArXiv fyhbc, Center for Open Science.
    15. Jixiang Liu & Longzhu Xiao, 2024. "Socioeconomic differences in effect size: predicting commuting mode choice of migrants and locals using a light gradient boosting approach," Transportation, Springer, vol. 51(1), pages 1-24, February.
    16. Charles Raux & Ayana Lamatkhanova & Lény Grassot, 2021. "Does the built environment shape commuting? The case of Lyon (France)," Post-Print halshs-03010833, HAL.
    17. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    19. Carozzi, Felipe & Roth, Sefi, 2020. "Dirty Density: Air Quality and the Density of American Cities," IZA Discussion Papers 13191, Institute of Labor Economics (IZA).
    20. Jae-Hong Kwon & Gi-Hyoug Cho, 2023. "The Long-Lasting Impact of Past Mobility Dependence on Travel Mode Share in a New Neighborhood: The Case of the Seoul Metropolitan Area, South Korea," Land, MDPI, vol. 12(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:409-:d:1318888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.