IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p878-d495537.html
   My bibliography  Save this article

The Economic Effects of Electromobility in Sustainable Urban Public Transport

Author

Listed:
  • Oliwia Pietrzak

    (Faculty of Engineering and Economics of Transport, Maritime University of Szczecin, 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland)

  • Krystian Pietrzak

    (Faculty of Engineering and Economics of Transport, Maritime University of Szczecin, 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland)

Abstract

This paper focuses on effects of implementing zero-emission buses in public transport fleets in urban areas in the context of electromobility assumptions. It fills the literature gap in the area of research on the impact of the energy mix of a given country on the issues raised in this article. The main purpose of this paper is to identify and analyse economic effects of implementing zero-emission buses in public transport in cities. The research area was the city of Szczecin, Poland. The research study was completed using the following research methods: literature review, document analysis (legal acts and internal documents), case study, ratio analysis, and comparative analysis of selected variants (investment variant and base variant). The conducted research study has shown that economic benefits resulting from implementing zero-emission buses in an urban transport fleet are limited by the current energy mix structure of the given country. An unfavourable energy mix may lead to increased emissions of SO 2 and CO 2 resulting from operation of this kind of vehicle. Therefore, achieving full effects in the field of electromobility in the given country depends on taking concurrent actions in order to diversify the power generation sources, and in particular on increasing the share of Renewable Energy Sources (RES).

Suggested Citation

  • Oliwia Pietrzak & Krystian Pietrzak, 2021. "The Economic Effects of Electromobility in Sustainable Urban Public Transport," Energies, MDPI, vol. 14(4), pages 1-28, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:878-:d:495537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2019. "Urban public charging station locating method for electric vehicles based on land use approach," Journal of Transport Geography, Elsevier, vol. 74(C), pages 173-180.
    2. Hamidi, Zahra & Camporeale, Rosalia & Caggiani, Leonardo, 2019. "Inequalities in access to bike-and-ride opportunities: Findings for the city of Malmö," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 673-688.
    3. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    4. Kimpton, Anthony & Pojani, Dorina & Sipe, Neil & Corcoran, Jonathan, 2020. "Parking Behavior: Park ‘n’ Ride (PnR) to encourage multimodalism in Brisbane," Land Use Policy, Elsevier, vol. 91(C).
    5. Majid Astaneh & Jelena Andric & Lennart Löfdahl & Dario Maggiolo & Peter Stopp & Mazyar Moghaddam & Michel Chapuis & Henrik Ström, 2020. "Calibration Optimization Methodology for Lithium-Ion Battery Pack Model for Electric Vehicles in Mining Applications," Energies, MDPI, vol. 13(14), pages 1-27, July.
    6. Amelia Mutter, 2019. "Obduracy and Change in Urban Transport—Understanding Competition Between Sustainable Fuels in Swedish Municipalities," Sustainability, MDPI, vol. 11(21), pages 1-16, November.
    7. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    8. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    9. Correa, G. & Muñoz, P.M. & Rodriguez, C.R., 2019. "A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus," Energy, Elsevier, vol. 187(C).
    10. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    11. Tapio, Petri & Banister, David & Luukkanen, Jyrki & Vehmas, Jarmo & Willamo, Risto, 2007. "Energy and transport in comparison: Immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000," Energy Policy, Elsevier, vol. 35(1), pages 433-451, January.
    12. Barla, Philippe & Gilbert-Gonthier, Mathieu & Lopez Castro, Marco Antonio & Miranda-Moreno, Luis, 2017. "Eco-driving training and fuel consumption: Impact, heterogeneity and sustainability," Energy Economics, Elsevier, vol. 62(C), pages 187-194.
    13. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    14. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    15. Marcin Wołek & Agnieszka Szmelter-Jarosz & Marcin Koniak & Anna Golejewska, 2020. "Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter?," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    16. H-S. Jacob Tsao & Wenbin Wei & Agus Pratama, 2009. "Operational feasibility of one-dedicated-lane bus rapid transit/light rail systems," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(3), pages 239-260, April.
    17. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    18. Elżbieta Macioszek & Agata Kurek, 2020. "The Use of a Park and Ride System—A Case Study Based on the City of Cracow (Poland)," Energies, MDPI, vol. 13(13), pages 1-26, July.
    19. Jin Yong Jeon & Joo Young Hong & Sung Min Kim & Ki-Hyun Kim, 2018. "Noise Indicators for Size Distributions of Airborne Particles and Traffic Activities in Urban Areas," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    20. Yan Wang & Dong Yang, 2018. "Impacts of Freight Transport on PM 2.5 Concentrations in China: A Spatial Dynamic Panel Analysis," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    21. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    22. S. V. Ilkevich, 2019. "The Sources Of Competitive Advantages Of Electric Scooter Sharing Services," Strategic decisions and risk management, Real Economy Publishing House, vol. 10(3).
    23. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
    24. Neil Quarles & Kara M. Kockelman & Moataz Mohamed, 2020. "Costs and Benefits of Electrifying and Automating Bus Transit Fleets," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    25. Tomasz Bieliński & Agnieszka Kwapisz & Agnieszka Ważna, 2019. "Bike-Sharing Systems in Poland," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
    26. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    27. Correa, G. & Muñoz, P. & Falaguerra, T. & Rodriguez, C.R., 2017. "Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis," Energy, Elsevier, vol. 141(C), pages 537-549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    2. Krzysztof Zamasz & Jakub Stęchły & Aleksandra Komorowska & Przemysław Kaszyński, 2021. "The Impact of Fleet Electrification on Carbon Emissions: A Case Study from Poland," Energies, MDPI, vol. 14(20), pages 1-17, October.
    3. Izabela Zoltowska & Jeremy Lin, 2021. "Optimal Charging Schedule Planning for Electric Buses Using Aggregated Day-Ahead Auction Bids," Energies, MDPI, vol. 14(16), pages 1-18, August.
    4. Marcin Połom & Paweł Wiśniewski, 2021. "Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    5. Elżbieta Macioszek & Anna Granà & Paulo Fernandes & Margarida C. Coelho, 2022. "New Perspectives and Challenges in Traffic and Transportation Engineering Supporting Energy Saving in Smart Cities—A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 15(12), pages 1-8, June.
    6. Roman Chinoracky & Natalia Stalmasekova & Tatiana Corejova, 2022. "Trends in the Field of Electromobility—From the Perspective of Market Characteristics and Value-Added Services: Literature Review," Energies, MDPI, vol. 15(17), pages 1-19, August.
    7. Anna Eliza Wolnowska & Lech Kasyk, 2022. "Transport Preferences of City Residents in the Context of Urban Mobility and Sustainable Development," Energies, MDPI, vol. 15(15), pages 1-32, August.
    8. Jacek Trębecki & Joanna Przybylska & Waldemar Rydzak & Miguel Afonso Sellitto & Joanna Oleśków-Szłapka, 2022. "Activities Related to an Electromobility Strategy as a Part of Low Carbon Energy Transition: A Survey in Polish Communes," Energies, MDPI, vol. 15(11), pages 1-13, May.
    9. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    10. Kamila Janovská & Iveta Vozòáková & Petr Besta & Marek Šafránek, 2021. "Ecological and economic multicriteria optimization of operating alternative propulsion vehicles within the city of Ostrava in the Czech Republic," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 907-943, December.
    11. Mikołaj Bartłomiejczyk & Marcin Połom, 2021. "Possibilities for Developing Electromobility by Using Autonomously Powered Trolleybuses Based on the Example of Gdynia," Energies, MDPI, vol. 14(10), pages 1-23, May.
    12. Carola Leone & Laura Sturaro & Giacomo Geroli & Michela Longo & Wahiba Yaici, 2021. "Design and Implementation of an Electric Skibus Line in North Italy," Energies, MDPI, vol. 14(23), pages 1-22, November.
    13. Bretones, Alexandra & Marquet, Oriol, 2022. "Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review," Transport Policy, Elsevier, vol. 127(C), pages 230-249.
    14. Marcin Połom, 2021. "Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    15. Marcin Połom & Paweł Wiśniewski, 2021. "Implementing Electromobility in Public Transport in Poland in 1990–2020. A Review of Experiences and Evaluation of the Current Development Directions," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    16. Liudmyla Davydenko & Nina Davydenko & Andrii Bosak & Alla Bosak & Agnieszka Deja & Tygran Dzhuguryan, 2022. "Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging," Energies, MDPI, vol. 15(10), pages 1-27, May.
    17. Heap-Yih Chong & Mengyuan Cheng, 2023. "Integrating Advanced Technologies for Sustainable Construction Purposes," Energies, MDPI, vol. 16(16), pages 1-4, August.
    18. Willams Barbosa & Thomaz Prado & Cleovano Batista & Julio César Câmara & Rodrigo Cerqueira & Rodrigo Coelho & Lilian Guarieiro, 2022. "Electric Vehicles: Bibliometric Analysis of the Current State of the Art and Perspectives," Energies, MDPI, vol. 15(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    2. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    3. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.
    4. Neil Quarles & Kara M. Kockelman & Moataz Mohamed, 2020. "Costs and Benefits of Electrifying and Automating Bus Transit Fleets," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    5. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    6. Elżbieta Macioszek & Agata Kurek, 2021. "The Analysis of the Factors Determining the Choice of Park and Ride Facility Using a Multinomial Logit Model," Energies, MDPI, vol. 14(1), pages 1-33, January.
    7. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    8. Bogdan Ovidiu Varga & Florin Mariasiu & Cristian Daniel Miclea & Ioan Szabo & Anamaria Andreea Sirca & Vlad Nicolae, 2020. "Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service," Energies, MDPI, vol. 13(2), pages 1-12, January.
    9. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    10. Ajanovic, A. & Glatt, A. & Haas, R., 2021. "Prospects and impediments for hydrogen fuel cell buses," Energy, Elsevier, vol. 235(C).
    11. Orlando Barraza & Miquel Estrada, 2021. "Battery Electric Bus Network: Efficient Design and Cost Comparison of Different Powertrains," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    12. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
    13. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Xinkuo Xu & Xiaofeng Lv & Liyan Han, 2019. "Carbon Asset of Electrification: Valuing the Transition from Fossil Fuel-Powered Buses to Battery Electric Buses in Beijing," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    15. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    16. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    17. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    18. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    19. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:878-:d:495537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.