IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5991-d891806.html
   My bibliography  Save this article

A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective

Author

Listed:
  • Karam M. Al-Obaidi

    (Department of the Natural and Built Environment, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield S1 1WB, UK)

  • Mohataz Hossain

    (Department of the Natural and Built Environment, College of Social Sciences and Arts, Sheffield Hallam University, Sheffield S1 1WB, UK)

  • Nayef A. M. Alduais

    (Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Malaysia)

  • Husam S. Al-Duais

    (Department of Architecture, Faculty of Built Environment, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Hossein Omrany

    (School of Architecture and Built Environment, The University of Adelaide, Adelaide 5005, Australia)

  • Amirhosein Ghaffarianhoseini

    (School of Future Environments, Auckland University of Technology, Auckland 1142, New Zealand)

Abstract

Applications of the Internet of Things (IoT) are rapidly utilized in smart buildings and smart cities to reduce energy consumption. This advancement has caused a knowledge gap in applying IoT effectively by experts in the built environment to achieve energy efficiency. The study aims to provide an extensive review of IoT applications for energy savings in buildings and cities. This study contributes to the field of IoT by guiding and supporting built environment experts to utilize IoT technologies. This paper performed a thorough study using a systematic review that covered an overview of IoT concepts, models, applications, trends and challenges that can be encountered in the built environment. The findings indicated limitations in developing IoT strategies in buildings and cities by professionals in this field due to insufficient comprehension of technologies and their applied methods. Additionally, the study found an indefinite implementation and constraints on using IoT when integrated into the built environment. Finally, the study provides critical arguments and the next steps to effectively utilize IoT in terms of energy efficiency.

Suggested Citation

  • Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5991-:d:891806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirco Andreotti & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Roberto Malaguti, 2020. "Design and Construction of a New Metering Hot Box for the In Situ Hygrothermal Measurement in Dynamic Conditions of Historic Masonries," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. José Paulo Lousado & Sandra Antunes, 2020. "Monitoring and Support for Elderly People Using LoRa Communication Technologies: IoT Concepts and Applications," Future Internet, MDPI, vol. 12(11), pages 1-30, November.
    3. Png, Ethan & Srinivasan, Seshadhri & Bekiroglu, Korkut & Chaoyang, Jiang & Su, Rong & Poolla, Kameshwar, 2019. "An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings," Applied Energy, Elsevier, vol. 239(C), pages 408-424.
    4. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    5. Alessandro Floris & Simone Porcu & Roberto Girau & Luigi Atzori, 2021. "An IoT-Based Smart Building Solution for Indoor Environment Management and Occupants Prediction," Energies, MDPI, vol. 14(10), pages 1-17, May.
    6. Jooseok Oh, 2020. "IoT-Based Smart Plug for Residential Energy Conservation: An Empirical Study Based on 15 Months’ Monitoring," Energies, MDPI, vol. 13(15), pages 1-13, August.
    7. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    8. Mohataz Hossain & Zhenzhou Weng & Rosa Schiano-Phan & David Scott & Benson Lau, 2020. "Application of IoT and BEMS to Visualise the Environmental Performance of an Educational Building," Energies, MDPI, vol. 13(15), pages 1-33, August.
    9. Gonçalo Marques & Cristina Roque Ferreira & Rui Pitarma, 2018. "A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings," IJERPH, MDPI, vol. 15(4), pages 1-14, April.
    10. Quynh Lê & Hoang Boi Nguyen & Tony Barnett, 2012. "Smart Homes for Older People: Positive Aging in a Digital World," Future Internet, MDPI, vol. 4(2), pages 1-11, June.
    11. Isidro Calvo & Aitana Espin & Jose Miguel Gil-García & Pablo Fernández Bustamante & Oscar Barambones & Estibaliz Apiñaniz, 2022. "Scalable IoT Architecture for Monitoring IEQ Conditions in Public and Private Buildings," Energies, MDPI, vol. 15(6), pages 1-23, March.
    12. Bruno Mataloto & Daniel Calé & Kaiser Carimo & Joao C. Ferreira & Ricardo Resende, 2021. "3D IoT System for Environmental and Energy Consumption Monitoring System," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    13. Diogo Santos & João C. Ferreira, 2019. "IoT Power Monitoring System for Smart Environments," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    14. Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
    15. He, Qiao-Chu & Yang, Yun & Bai, Lingquan & Zhang, Baosen, 2020. "Smart energy storage management via information systems design," Energy Economics, Elsevier, vol. 85(C).
    16. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
    17. Bouziane Brik & Moez Esseghir & Leila Merghem-Boulahia & Ahmed Hentati, 2022. "Providing Convenient Indoor Thermal Comfort in Real-Time Based on Energy-Efficiency IoT Network," Energies, MDPI, vol. 15(3), pages 1-17, January.
    18. Elarbi Badidi & Zineb Mahrez & Essaid Sabir, 2020. "Fog Computing for Smart Cities’ Big Data Management and Analytics: A Review," Future Internet, MDPI, vol. 12(11), pages 1-28, October.
    19. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    2. Jakub Hyla & Wojciech Sułek, 2023. "Energy-Efficient Raptor-like LDPC Coding Scheme Design and Implementation for IoT Communication Systems," Energies, MDPI, vol. 16(12), pages 1-21, June.
    3. Hossein Omrany & Karam M. Al-Obaidi & Amreen Husain & Amirhosein Ghaffarianhoseini, 2023. "Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    4. Daniela Cristina Momete, 2023. "Salient Insights on the Performance of EU Member States on the Road towards an Energy-Efficient Future," Energies, MDPI, vol. 16(2), pages 1-17, January.
    5. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    2. Jose A. Afonso & Vitor Monteiro & Joao L. Afonso, 2023. "Internet of Things Systems and Applications for Smart Buildings," Energies, MDPI, vol. 16(6), pages 1-3, March.
    3. Patricia Franco & José M. Martínez & Young-Chon Kim & Mohamed A. Ahmed, 2022. "A Cyber-Physical Approach for Residential Energy Management: Current State and Future Directions," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    4. Su, Bing & Wang, Shengwei, 2020. "An agent-based distributed real-time optimal control strategy for building HVAC systems for applications in the context of future IoT-based smart sensor networks," Applied Energy, Elsevier, vol. 274(C).
    5. Joowook Kim & Doosam Song & Suyeon Kim & Sohyun Park & Youngjin Choi & Hyunwoo Lim, 2020. "Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building," Energies, MDPI, vol. 13(9), pages 1-17, May.
    6. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).
    7. Ahmed Saad & Samy Faddel & Osama Mohammed, 2020. "IoT-Based Digital Twin for Energy Cyber-Physical Systems: Design and Implementation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    8. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    9. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    10. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    11. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    12. Abdul Hasib Siddique & Mehedi Hasan & Sharnali Islam & Khalid Rashid, 2021. "Prospective Smart Distribution Substation in Bangladesh: Modeling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    13. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    14. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    15. Josimar Reyes-Campos & Giner Alor-Hernández & Isaac Machorro-Cano & José Oscar Olmedo-Aguirre & José Luis Sánchez-Cervantes & Lisbeth Rodríguez-Mazahua, 2021. "Discovery of Resident Behavior Patterns Using Machine Learning Techniques and IoT Paradigm," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    16. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    17. Faraz Enayati Ahangar & Frank R. Freedman & Akula Venkatram, 2019. "Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    18. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    19. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    20. Fragkos, Panagiotis & Kouvaritakis, Nikos, 2018. "Model-based analysis of Intended Nationally Determined Contributions and 2 °C pathways for major economies," Energy, Elsevier, vol. 160(C), pages 965-978.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5991-:d:891806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.