IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2266-d1645644.html
   My bibliography  Save this article

Analytical Diagnostic and Control System of Energy and Mechanical Efficiency of Electric Drives

Author

Listed:
  • Nikolay Korolev

    (Educational Center for Digital Technologies, Empress Catherine II Saint Petersburg Mining University, 2, 21 Line of Vasilyevsky Island, 199106 St. Petersburg, Russia)

Abstract

The electric drive is strategically placed in the power industry. It is exposed to wear and tear, defects, and constructional damage, as is any technical device. An information–analytical system is presented in this work. It performs the tasks of monitoring, diagnostics, general assessment of technical condition, and continuous assessment of energy and mechanical efficiency of the electric drive based on the analysis of immediate values of currents and voltages. The system modules are finished products with practical application, which are supported by experimental validation. This article contains a detailed description of the methods implemented in the system development, as well as a description of the laboratory bench and equipment used in our experiments. The information–analytical system is shown and proved on the basis of a fault reconstruction example with electric drive misalignment. According to the obtained results, recommendations for preventive control and proposals for development in this direction are formulated.

Suggested Citation

  • Nikolay Korolev, 2025. "Analytical Diagnostic and Control System of Energy and Mechanical Efficiency of Electric Drives," Energies, MDPI, vol. 18(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2266-:d:1645644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam Wróblewski & Pavlo Krot & Radosław Zimroz & Timo Mayer & Jyri Peltola, 2023. "Review of Linear Electric Motor Hammers—An Energy-Saving and Eco-Friendly Solution in Industry," Energies, MDPI, vol. 16(2), pages 1-28, January.
    2. Zhang, Xinfang & Zhang, Zhe & Liu, Yang & Xu, Zhigang & Qu, Xiaobo, 2024. "A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation," Renewable Energy, Elsevier, vol. 234(C).
    3. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    4. Mathew Habyarimana & Abayomi A. Adebiyi, 2025. "A Review of Artificial Intelligence Applications in Predicting Faults in Electrical Machines," Energies, MDPI, vol. 18(7), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Ke & Li, Jipu & Deng, Shuhan & Kwoh, Chee Keong & Chen, Zhuyun & Li, Weihua, 2024. "A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Sergey Zhironkin & Dawid Szurgacz, 2023. "Mining Technologies Innovative Development II: The Overview," Energies, MDPI, vol. 16(15), pages 1-5, July.
    3. Xuanwei Zhao & Jinsong Han, 2025. "How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review," Sustainability, MDPI, vol. 17(5), pages 1-28, March.
    4. Maksymilian Mądziel, 2025. "Impact of Weather Conditions on Energy Consumption Modeling for Electric Vehicles," Energies, MDPI, vol. 18(8), pages 1-21, April.
    5. Nguyen Minh Trieu & Nguyen Tan No & Truong Nguyen Vu & Nguyen Truong Thinh, 2025. "Chattering-Free PID-Nested Nonsingular Terminal Sliding Mode Controller Design for Electrical Servo Drives," Mathematics, MDPI, vol. 13(7), pages 1-11, April.
    6. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.
    7. Qiong Bao & Minghao Gao & Jianming Chen & Xu Tan, 2024. "Location and Size Planning of Charging Parking Lots Based on EV Charging Demand Prediction and Fuzzy Bi-Objective Optimization," Mathematics, MDPI, vol. 12(19), pages 1-21, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2266-:d:1645644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.