IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp889-904.html
   My bibliography  Save this article

Machine learning approaches for estimating commercial building energy consumption

Author

Listed:
  • Robinson, Caleb
  • Dilkina, Bistra
  • Hubbs, Jeffrey
  • Zhang, Wenwen
  • Guhathakurta, Subhrajit
  • Brown, Marilyn A.
  • Pendyala, Ram M.

Abstract

Building energy consumption makes up 40% of the total energy consumption in the United States. Given that energy consumption in buildings is influenced by aspects of urban form such as density and floor-area-ratios (FAR), understanding the distribution of energy intensities is critical for city planners. This paper presents a novel technique for estimating commercial building energy consumption from a small number of building features by training machine learning models on national data from the Commercial Buildings Energy Consumption Survey (CBECS). Our results show that gradient boosting regression models perform the best at predicting commercial building energy consumption, and can make predictions that are on average within a factor of 2 from the true energy consumption values (with an r2 score of 0.82). We validate our models using the New York City Local Law 84 energy consumption dataset, then apply them to the city of Atlanta to create aggregate energy consumption estimates. In general, the models developed only depend on five commonly accessible building and climate features, and can therefore be applied to diverse metropolitan areas in the United States and to other countries through replication of our methodology.

Suggested Citation

  • Robinson, Caleb & Dilkina, Bistra & Hubbs, Jeffrey & Zhang, Wenwen & Guhathakurta, Subhrajit & Brown, Marilyn A. & Pendyala, Ram M., 2017. "Machine learning approaches for estimating commercial building energy consumption," Applied Energy, Elsevier, vol. 208(C), pages 889-904.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:889-904
    DOI: 10.1016/j.apenergy.2017.09.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:889-904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.