Forecasting Residential Heating and Electricity Demand with Scalable, High-Resolution, Open-Source Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
- Robinson, Caleb & Dilkina, Bistra & Hubbs, Jeffrey & Zhang, Wenwen & Guhathakurta, Subhrajit & Brown, Marilyn A. & Pendyala, Ram M., 2017. "Machine learning approaches for estimating commercial building energy consumption," Applied Energy, Elsevier, vol. 208(C), pages 889-904.
- Hribar, Rok & Potočnik, Primož & Šilc, Jurij & Papa, Gregor, 2019. "A comparison of models for forecasting the residential natural gas demand of an urban area," Energy, Elsevier, vol. 167(C), pages 511-522.
- Singh, Manav Mahan & Singaravel, Sundaravelpandian & Geyer, Philipp, 2021. "Machine learning for early stage building energy prediction: Increment and enrichment," Applied Energy, Elsevier, vol. 304(C).
- Özmen, Ayşe & Yılmaz, Yavuz & Weber, Gerhard-Wilhelm, 2018. "Natural gas consumption forecast with MARS and CMARS models for residential users," Energy Economics, Elsevier, vol. 70(C), pages 357-381.
- Iain Staffell & Stefan Pfenninger & Nathan Johnson, 2023. "A global model of hourly space heating and cooling demand at multiple spatial scales," Nature Energy, Nature, vol. 8(12), pages 1328-1344, December.
- Wojciech Panek & Tomasz Włodek, 2022. "Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms," Energies, MDPI, vol. 15(1), pages 1-19, January.
- Lotta Kannari & Jussi Kiljander & Kalevi Piira & Jouko Piippo & Pekka Koponen, 2021. "Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator," Forecasting, MDPI, vol. 3(2), pages 1-13, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
- Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
- Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
- Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
- Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
- Tomasz Cieślik & Piotr Narloch & Adam Szurlej & Krzysztof Kogut, 2022. "Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland," Energies, MDPI, vol. 15(4), pages 1-18, February.
- Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
- Yang, Zhaoming & Liu, Zhe & Zhou, Jing & Song, Chaofan & Xiang, Qi & He, Qian & Hu, Jingjing & Faber, Michael H. & Zio, Enrico & Li, Zhenlin & Su, Huai & Zhang, Jinjun, 2023. "A graph neural network (GNN) method for assigning gas calorific values to natural gas pipeline networks," Energy, Elsevier, vol. 278(C).
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
- Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
- Pruethsan Sutthichaimethee & Worawat Sa-Ngiamvibool & Buncha Wattana & Jianhui Luo & Supannika Wattana, 2025. "Enhancing Sustainable Strategic Governance for Energy-Consumption Reduction Towards Carbon Neutrality in the Energy and Transportation Sectors," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
- Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
- Jackson, Matthew D. & Regnier, Geraldine & Staffell, Iain, 2024. "Aquifer Thermal Energy Storage for low carbon heating and cooling in the United Kingdom: Current status and future prospects," Applied Energy, Elsevier, vol. 376(PA).
- Mariangela Guidolin & Stefano Rizzelli, 2025. "Dynamic Forecasting of Gas Consumption in Selected European Countries," Forecasting, MDPI, vol. 7(2), pages 1-29, May.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
- Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-06-16 (Big Data)
- NEP-CMP-2025-06-16 (Computational Economics)
- NEP-ENE-2025-06-16 (Energy Economics)
- NEP-ENV-2025-06-16 (Environmental Economics)
- NEP-FOR-2025-06-16 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.22873. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.