IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i2p23-d1664735.html
   My bibliography  Save this article

Dynamic Forecasting of Gas Consumption in Selected European Countries

Author

Listed:
  • Mariangela Guidolin

    (Department of Statistical Sciences, University of Padova, 35121 Padova, Italy)

  • Stefano Rizzelli

    (Department of Statistical Sciences, University of Padova, 35121 Padova, Italy)

Abstract

Natural gas consumption in Europe has undergone substantial changes in recent years, driven by geopolitical tensions, economic dynamics, and the continent’s ongoing transition towards cleaner energy sources. Furthermore, as noted in the International Energy Agency’s Gas Market Report 2025, natural gas demand is becoming increasingly sensitive to fluctuations in weather patterns, including cold snaps and heatwaves. These factors make the task of forecasting future annual consumption particularly challenging from a statistical perspective and underscore the importance of accurately quantifying the uncertainty surrounding predictions. In this paper, we propose a simple yet flexible approach to issuing dynamic probabilistic forecasts based on an additive time series model. To capture long-term trends, the model incorporates a deterministic component based on the Guseo–Guidolin innovation diffusion framework. In addition, a stochastic innovation term governed by an ARIMAX process is used to describe year-over-year fluctuations, helping to account for the potential presence of variance nonstationarity over time. The proposed methodology is applied to forecast future annual consumption in six key European countries: Austria, France, Germany, Italy, the Netherlands, and the United Kingdom.

Suggested Citation

  • Mariangela Guidolin & Stefano Rizzelli, 2025. "Dynamic Forecasting of Gas Consumption in Selected European Countries," Forecasting, MDPI, vol. 7(2), pages 1-29, May.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:23-:d:1664735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
    2. Guidolin, Mariangela & Guseo, Renato, 2016. "The German energy transition: Modeling competition and substitution between nuclear power and Renewable Energy Technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1498-1504.
    3. Wojciech Panek & Tomasz Włodek, 2022. "Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms," Energies, MDPI, vol. 15(1), pages 1-19, January.
    4. Bierens, Herman J., 1987. "Armax model specification testing, with an application to unemployment in the Netherlands," Journal of Econometrics, Elsevier, vol. 35(1), pages 161-190, May.
    5. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    8. Sen, Doruk & Hamurcuoglu, K. Irem & Ersoy, Melisa Z. & Tunç, K.M. Murat & Günay, M. Erdem, 2023. "Forecasting long-term world annual natural gas production by machine learning," Resources Policy, Elsevier, vol. 80(C).
    9. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    10. W.J. Wouter Botzen & Tim Nees & Francisco Estrada, 2020. "Temperature Effects on Electricity and Gas Consumption: Empirical Evidence from Mexico and Projections under Future Climate Conditions," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    11. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    12. Guidolin, Mariangela & Alpcan, Tansu, 2019. "Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables," Renewable Energy, Elsevier, vol. 139(C), pages 359-367.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Savio & Luigi De Giovanni & Mariangela Guidolin, 2022. "Modelling Energy Transition in Germany: An Analysis through Ordinary Differential Equations and System Dynamics," Forecasting, MDPI, vol. 4(2), pages 1-18, April.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Anita M. Bunea & Mariangela Guidolin & Piero Manfredi & Pompeo Della Posta, 2022. "Diffusion of Solar PV Energy in the UK: A Comparison of Sectoral Patterns," Forecasting, MDPI, vol. 4(2), pages 1-21, April.
    5. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Diffusion forecast for grid-tied rooftop solar photovoltaic technology under store-on grid scheme model in Sub-Saharan Africa: Government role assessment," Renewable Energy, Elsevier, vol. 180(C), pages 516-535.
    6. Darda, Md Abud & Guseo, Renato & Mortarino, Cinzia, 2015. "Nonlinear production path and an alternative reserves estimate for South Asian natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 654-664.
    7. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    8. Palanisamy Manigandan & MD Shabbir Alam & Majed Alharthi & Uzma Khan & Kuppusamy Alagirisamy & Duraisamy Pachiyappan & Abdul Rehman, 2021. "Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models," Energies, MDPI, vol. 14(19), pages 1-17, September.
    9. Sameh Al-Shihabi & Ridvan Aydin & Zehra Canan Araci & Fikri Dweiri & Mohammed Obeidat & Mohammad Fayez Al Bataineh, 2024. "Abolishing Single-Use Plastic Water Bottles in Dubai Hotels as a Voluntary Act—Scenarios and Environmental Impacts," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    10. Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
    11. Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
    12. Shi, Y.Y. & Wei, Z.X. & Shahbaz, M., 2023. "Analyzing the co-evolutionary dynamics of consumers’ attitudes and green energy technologies based on a triple-helix model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Andrea Savio & Giovanni Ferrari & Francesco Marinello & Andrea Pezzuolo & Maria Cristina Lavagnolo & Mariangela Guidolin, 2022. "Developments in Bioelectricity and Perspectives in Italy: An Analysis of Regional Production Patterns," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    14. Guidolin, Mariangela & Alpcan, Tansu, 2019. "Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables," Renewable Energy, Elsevier, vol. 139(C), pages 359-367.
    15. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    16. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    17. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    18. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    19. Simon P. Anderson & André de Palma, 2012. "Competition for attention in the Information (overload) Age," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 1-25, March.
    20. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:23-:d:1664735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.