IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i5d10.1007_s13198-023-02204-8.html
   My bibliography  Save this article

Studying innovation adoption using different distribution functions

Author

Listed:
  • Ankur Kumar

    (University of Delhi)

  • Ompal Singh

    (University of Delhi)

  • Adarsh Anand

    (University of Delhi)

  • P. K. Kapur

    (University of Delhi
    Amity University)

Abstract

In today's technologically advanced world, every market area is witnessing an increase in the demand for product innovation, so a company must keep innovating in order to get an advantage over rival businesses. Research in the field of innovation diffusion has been primarily based on modelling. The innovation diffusion model is a notion that describes how novel concepts, items, or technological advancements are embraced and disseminated within a community or social system. The Bass innovation diffusion model and many of its extended forms have been highly focused in marketing literature. In this paper, a unified approach is used to test whether the diffusion models are affected if we increase the number of parameters by taking different distribution functions for the adoption rate. Thus, a set of diffusion models that depict different market scenarios have been presented and compared with the standard model. The proposed model has been analyzed on Samsung mobile phone and I-Phone sales data sets and their inferences are quite promising.

Suggested Citation

  • Ankur Kumar & Ompal Singh & Adarsh Anand & P. K. Kapur, 2024. "Studying innovation adoption using different distribution functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(5), pages 1900-1907, May.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:5:d:10.1007_s13198-023-02204-8
    DOI: 10.1007/s13198-023-02204-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02204-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02204-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Technology diffusion model with change in adoption rate and repeat purchases: a case of consumer balking," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 29-36, February.
    2. P.K. Kapur & Anu G. Aggarwal & Amir Hossein Soleiman Garmabaki & Gurinder Singh, 2013. "Modelling diffusion of successive generations of technology: a general framework," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 16(4), pages 465-484.
    3. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2020. "Modeling technology diffusion: a study based on market coverage and advertising efforts," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 154-162, July.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. P.K. Kapur & Kuldeep Chaudhary & Anu G. Aggarwal & P.C. Jha, 2012. "On the development of innovation diffusion model using stochastic differential equation incorporating change in the adoption rate," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 14(4), pages 472-484.
    6. Vijay Mahajan & Robert A. Peterson, 1978. "Innovation Diffusion in a Dynamic Potential Adopter Population," Management Science, INFORMS, vol. 24(15), pages 1589-1597, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiva & Neetu Gupta & Anu G. Aggarwal, 2024. "Innovation diffusion model based on advertising expenditure with change-point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(5), pages 1794-1801, May.
    2. Shakshi Singhal & Yasmeen Bano & Ompal Singh, 2024. "Demand forecasting of technological products considering re-purchasing and dynamic pricing: a modified diffusion model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(5), pages 1981-1998, May.
    3. Adarsh Anand & Mohini Agarwal & Gunjan Bansal & A. H. S. Garmabaki, 2016. "Studying product diffusion based on market coverage," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(4), pages 135-146, December.
    4. Hongmin Li & Woonghee Tim Huh, 2012. "Optimal pricing for a short life‐cycle product when customer price‐sensitivity varies over time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 552-576, October.
    5. Adarsh Anand & Richie Aggarwal & Ompal Singh, 2019. "Using Weibull Distribution for Modeling Bimodal Diffusion Curves: A Naive Framework to Study Product Life Cycle," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1-17, November.
    6. Swami, Sanjeev & Dutta, Arindam, 2010. "Advertising strategies for new product diffusion in emerging markets: Propositions and analysis," European Journal of Operational Research, Elsevier, vol. 204(3), pages 648-661, August.
    7. Guseo, Renato, 2016. "Latent heterogeneity effects in modelling individual hazards: A non-proportional approach," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 89-93.
    8. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
    9. Trieste, Leopoldo & Turchetti, Giuseppe, 2024. "The nature, causes, and effects of skepticism on technology diffusion," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    10. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Predicting diffusion dynamics and launch time strategy for mobile telecommunication services: an empirical analysis," Information Technology and Management, Springer, vol. 22(1), pages 33-51, March.
    11. Namwoon Kim & Dae Ryun Chang & Allan D. Shocker, 2000. "Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 496-512, April.
    12. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Technology diffusion model with change in adoption rate and repeat purchases: a case of consumer balking," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 29-36, February.
    13. Luigi De Cesare & Andrea Di Liddo & Stefania Ragni, 2003. "Numerical Solutions to Some Optimal Control Problems Arising from Innovation Diffusion," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 173-186, October.
    14. Luigi De Cesare & Andrea Di Liddo & Stefania Ragni, 2002. "Numerical solution of some optimal control problems arising from innovation diffusion," Computing in Economics and Finance 2002 221, Society for Computational Economics.
    15. Wagner A. Kamakura & Siva K. Balasubramanian, 1987. "Long‐term forecasting with innovation diffusion models: The impact of replacement purchases," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 6(1), pages 1-19.
    16. Crompton, Paul, 2001. "The diffusion of new steelmaking technology," Resources Policy, Elsevier, vol. 27(2), pages 87-95, June.
    17. Richie Aggarwal & Ompal Singh & Adarsh Anand & P. K. Kapur, 2019. "Modeling innovation adoption incorporating time lag between awareness and adoption process," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(1), pages 83-90, February.
    18. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    19. Sanjeev Dewan & Dale Ganley & Kenneth L. Kraemer, 2010. "Complementarities in the Diffusion of Personal Computers and the Internet: Implications for the Global Digital Divide," Information Systems Research, INFORMS, vol. 21(4), pages 925-940, December.
    20. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2019. "Modeling Technological Substitution by Incorporating Dynamic Adoption Rate," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-24, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:5:d:10.1007_s13198-023-02204-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.