IDEAS home Printed from
   My bibliography  Save this article

Modeling cross-price effects on inter-category dynamics: The case of three computing platforms


  • Kim, Namwoon
  • Srivastava, Rajendra K.


Existing research on the market evolution model focused on new product sales growth for a single product category. Accordingly, this approach did not imply any interactions among separate but related product categories that could affect each other's market growth. However, the importance of analyzing these inter-category relationships is emphasized because such an analysis helps managers to better understand the underlying market dynamics and develop more profitable product-line strategies for a multi-product market. The current study suggests a sales growth model that can be used to analyze the inter-category product relationships and forecast sales of these related products. The authors develop a simultaneous equation model that incorporates the cross-price effects on inter-category dynamics for technological product markets. It deals with the price effect of one product category on the market size of other categories that serve similar customer utilities. The model is empirically tested based on the sales and price data of three computing platforms--mainframe, mini, and micro computers, which dynamically interact within the broader "computing" market. The results show that the sales of a given category of computing platform is significantly affected by the price of the category itself and by that of the related categories as well. The model is validated by comparing it with its alternative model specifications of similar purpose based on several established model comparison criteria. Managerial implications, contributions, and limitations of the model are also discussed.

Suggested Citation

  • Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.
  • Handle: RePEc:eee:jomega:v:35:y:2007:i:3:p:290-301

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    2. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    3. repec:ucp:bknber:9780226304557 is not listed on IDEAS
    4. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    5. Roger M. Heeler & Thomas P. Hustad, 1980. "Problems in Predicting New Product Growth for Consumer Durables," Management Science, INFORMS, vol. 26(10), pages 1007-1020, October.
    6. Vijay Mahajan & Robert A. Peterson, 1978. "Innovation Diffusion in a Dynamic Potential Adopter Population," Management Science, INFORMS, vol. 24(15), pages 1589-1597, November.
    7. Roland T. Rust & David C. Schmittlein, 1985. "A Bayesian Cross-Validated Likelihood Method for Comparing Alternative Specifications of Quantitative Models," Marketing Science, INFORMS, vol. 4(1), pages 20-40.
    8. Robert J. Gordon, 1990. "The Measurement of Durable Goods Prices," NBER Books, National Bureau of Economic Research, Inc, number gord90-1, May.
    9. Jain, Dipak C & Rao, Ram C, 1990. "Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 163-170, April.
    10. Bruce Robinson & Chet Lakhani, 1975. "Dynamic Price Models for New-Product Planning," Management Science, INFORMS, vol. 21(10), pages 1113-1122, June.
    11. Shlomo Kalish, 1983. "Monopolist Pricing with Dynamic Demand and Production Cost," Marketing Science, INFORMS, vol. 2(2), pages 135-159.
    12. Roland T. Rust & Duncan Simester & Roderick J. Brodie & V. Nilikant, 1995. "Model Selection Criteria: An Investigation of Relative Accuracy, Posterior Probabilities, and Combinations of Criteria," Management Science, INFORMS, vol. 41(2), pages 322-333, February.
    13. Namwoon Kim & Dae Ryun Chang & Allan D. Shocker, 2000. "Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 496-512, April.
    14. V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
    15. Paul Chwelos, 2003. "Approaches to performance measurement in hedonic analysis: Price indexes for laptop computers in the 1990's," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 12(3), pages 199-224.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    2. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    3. Namwoon Kim & Dae Ryun Chang & Allan D. Shocker, 2000. "Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 496-512, April.
    4. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    5. Wei-yu Kevin Chiang, 2012. "Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 327-343, April.
    6. Velickovic, Stevan & Radojicic, Valentina & Bakmaz, Bojan, 2016. "The effect of service rollout on demand forecasting: The application of modified Bass model to the step growing markets," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 130-140.
    7. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    8. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2019. "Modeling Technological Substitution by Incorporating Dynamic Adoption Rate," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-24, February.
    9. Hlavinka, Alexander N. & Mjelde, James W. & Dharmasena, Senarath & Holland, Christine, 2016. "Forecasting the adoption of residential ductless heat pumps," Energy Economics, Elsevier, vol. 54(C), pages 60-67.
    10. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    11. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.
    12. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
    13. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    14. Sanjeev Dewan & Dale Ganley & Kenneth L. Kraemer, 2010. "Complementarities in the Diffusion of Personal Computers and the Internet: Implications for the Global Digital Divide," Information Systems Research, INFORMS, vol. 21(4), pages 925-940, December.
    15. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    16. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    17. Zhang, Jie & Chiang, Wei-yu Kevin, 2020. "Durable goods pricing with reference price effects," Omega, Elsevier, vol. 91(C).
    18. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    19. Namwoon Kim & Jin K. Han & Rajendra K. Srivastava, 2002. "A Dynamic IT Adoption Model for the SOHO Market: PC Generational Decisions with Technological Expectations," Management Science, INFORMS, vol. 48(2), pages 222-240, February.
    20. Abhik Roy & Jagmohan Raju, 2011. "The influence of demand factors on dynamic competitive pricing strategy: An empirical study," Marketing Letters, Springer, vol. 22(3), pages 259-281, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:35:y:2007:i:3:p:290-301. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.